期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数字经济产业的关联效应测度与分析
1
作者 周珍胜 周遵富 李伟 《电脑知识与技术》 2023年第10期117-119,123,共4页
文章尝试编制2017年、2018年和2020年的数字经济产业投入产出表,计算出数字经济产业的中各部门的感应度系数。通过感应度系数建立灰度关联模型,得出与电子元器件相关联系数最高的是通信设备业,关联度为0.960,最低的是互联网和相关服务业... 文章尝试编制2017年、2018年和2020年的数字经济产业投入产出表,计算出数字经济产业的中各部门的感应度系数。通过感应度系数建立灰度关联模型,得出与电子元器件相关联系数最高的是通信设备业,关联度为0.960,最低的是互联网和相关服务业,关联度为0.585。说明通信设备业和电信业在数字经济中起着不可替代的作用,其拉动了国民经济的增长,应大力发展电信业,制造业,即电子元器件,通信设备业等以推动形成在新发展格局下的经济“双循环”的新模式。 展开更多
关键词 数字经济 灰度关联度模型 双循环 国民经济
下载PDF
A strip thickness prediction method of hot rolling based on D_S information reconstruction 被引量:1
2
作者 孙丽杰 邵诚 张利 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2192-2200,共9页
To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to impleme... To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model. 展开更多
关键词 grey relational degree GM(1 1) model Dempster/Shafer (D_S) method least square method thickness prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部