期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于灰度关联模型的浙江大学生返乡创业风险管理体系研究
1
作者 傅智园 《中国电子商务》 2024年第15期10-15,共6页
浙江出台多项大学生返乡创业扶持政策打造以人才振兴引领乡村全面振兴。然而返乡创业的各类风险导致项目中断,核心原因是缺乏风险评估与决策技术的支持。因此,文章旨在通过相关实证研究和大数据分析,探究适应浙江省大学生返乡创业特点... 浙江出台多项大学生返乡创业扶持政策打造以人才振兴引领乡村全面振兴。然而返乡创业的各类风险导致项目中断,核心原因是缺乏风险评估与决策技术的支持。因此,文章旨在通过相关实证研究和大数据分析,探究适应浙江省大学生返乡创业特点的风险管理体系。首先,基于前期发表的浙江省大学生返乡创业风险管理问题的实证研究和国内外研究现状,得出风险评估指标群;其次,通过AHP层次分析、灰度关联模型建立风险评估指标,支持向量机建立评估模型;最后,结合浙江大学生返乡创业现状、成功案例等设计风险管理体系。 展开更多
关键词 返乡创业 大学生创业 风险管理 灰度关联模型 评估指标
下载PDF
基于多级关联灰度模型的公路建设社会经济环境影响评价 被引量:22
2
作者 陈斌 魏庆曜 +2 位作者 高利 魏朗 陈荫三 《中国公路学报》 EI CAS CSCD 北大核心 2003年第1期77-81,共5页
为合理分析公路建设对社会、经济环境的影响 ,项目援用区域可持续发展理论构建公路建设社会、经济环境影响评价体系 ;引入多级关联灰度数学模型和客观定权方法 ,将评价体系作为一个完整的系统进行评价 ,并在此基础上给出了实例。
关键词 公路建设 环境影响评价 多级关联灰度模型 社会环境 经济环境 评价体系
下载PDF
数字经济产业的关联效应测度与分析
3
作者 周珍胜 周遵富 李伟 《电脑知识与技术》 2023年第10期117-119,123,共4页
文章尝试编制2017年、2018年和2020年的数字经济产业投入产出表,计算出数字经济产业的中各部门的感应度系数。通过感应度系数建立灰度关联模型,得出与电子元器件相关联系数最高的是通信设备业,关联度为0.960,最低的是互联网和相关服务业... 文章尝试编制2017年、2018年和2020年的数字经济产业投入产出表,计算出数字经济产业的中各部门的感应度系数。通过感应度系数建立灰度关联模型,得出与电子元器件相关联系数最高的是通信设备业,关联度为0.960,最低的是互联网和相关服务业,关联度为0.585。说明通信设备业和电信业在数字经济中起着不可替代的作用,其拉动了国民经济的增长,应大力发展电信业,制造业,即电子元器件,通信设备业等以推动形成在新发展格局下的经济“双循环”的新模式。 展开更多
关键词 数字经济 灰度关联模型 双循环 国民经济
下载PDF
A strip thickness prediction method of hot rolling based on D_S information reconstruction 被引量:1
4
作者 孙丽杰 邵诚 张利 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2192-2200,共9页
To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to impleme... To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model. 展开更多
关键词 grey relational degree GM(1 1) model Dempster/Shafer (D_S) method least square method thickness prediction
下载PDF
Models for Analyzing the Driving Force of Cultivated Land Supply Change
5
作者 LIUYanfang ZHANGYuqian XIAOBin 《Geo-Spatial Information Science》 2004年第1期18-23,共6页
This paper focuses on a series of quantitative an al ysis models, such as grey relational analysis model, hierarchical cluster an alysis model, principal component analysis model, linear regression model and elastic c... This paper focuses on a series of quantitative an al ysis models, such as grey relational analysis model, hierarchical cluster an alysis model, principal component analysis model, linear regression model and elastic coefficient model. These models are used to analyze the comprehensive function and effect of driving forces systemically, including analysis on featur es, analysis for differentiating the primary and the secondary, analysis on comp rehensive effects, analysis of elasticity, analysis of prediction. The primary a nd characteristic factors can be extracted by analysis of features and analysis for differentiating the primary and the secondary. Analysis on prediction an d elasticity can predict the area of cultivated land in the future and find out which factors exert great influence on the cultivated land supply. 展开更多
关键词 driving force cultivated land supply model for comprehensive effects analysis on elasticity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部