期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ICA阈值优化耦合信息熵的边缘提取算法 被引量:3
1
作者 郭健 李智 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第9期150-155,共6页
为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的... 为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的分段阈值选择合适的阈值,引入了帝国主义竞争(imperialist competitive algorithm,ICA)优化算法,计算图像的最优阈值,根据获得的最优阈值将每个图像子块划分为不同的均匀区域;最后,通过计算每个均匀区域的信息熵,利用信息熵检测所有处于不同均匀区域的边界像素来提取边缘.实验结果表明:与当前常用的边缘提取算法比较,本文算法具有更高的品质因数与边缘连续性,能够抑制过于微小和琐碎的细节,突出有效的边缘信息,边缘定位精度高且平滑连贯,能够准确地提取目标轮廓. 展开更多
关键词 边缘提取 帝国主义竞争算法 分段阈值 信息熵 灰度分布模式 均匀区域
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部