期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于灰度特征码映射匹配修正的大容量图像隐写算法 被引量:1
1
作者 姚孝明 《铁道学报》 EI CAS CSCD 北大核心 2012年第9期45-50,共6页
研究在宿主图像内以最小比特修改量实现最大秘密信息嵌入的映射匹配隐写技术中映射关系建模问题。首先在分析既有映射匹配算法EMD算法、GLM算法基础上,进一步将二进码流的嵌入模型化为像素灰度特征码的映射匹配修正过程,并讨论了灰度特... 研究在宿主图像内以最小比特修改量实现最大秘密信息嵌入的映射匹配隐写技术中映射关系建模问题。首先在分析既有映射匹配算法EMD算法、GLM算法基础上,进一步将二进码流的嵌入模型化为像素灰度特征码的映射匹配修正过程,并讨论了灰度特征码的映射匹配规则;随后由此提出一种采用两位灰度特征码直接映射匹配,每像素至多修正两个LSB比特位的大容量图像隐写算法:GLC3M算法。实验与理论分析结果表明,相比EMD算法、GLM算法而言,在PSNR值大于44dB的条件下,其容量比GLM算法多1倍,比EMD算法多0.7倍,并且能够有效抗击直方图差异比较与RS等隐写分析攻击。 展开更多
关键词 灰度特征码 映射匹配修正 隐写术 隐写分析攻击
下载PDF
Automatic malware classification and new malware detection using machine learning 被引量:10
2
作者 Liu LIU Bao-sheng WANG +1 位作者 Bo YU Qiu-xi ZHONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第9期1336-1347,共12页
The explosive growth ofmalware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect... The explosive growth ofmalware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware pro- grams. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode n-gram, and import fimctions, which are employed to extract the features of the malware. The decision-making module uses the features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor (SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the un- known malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware. 展开更多
关键词 Malware classification Machine learning N-GRAM Gray-scale image Feature extraction Malware detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部