根据CSLBP(center-symmetric local binary pattern)和Uniform LBP(local binary pattern)特征描述行人局部纹理互补性的特点,提出将二者级联的组合特征用于行人检测:基于灰度图像的纹理特征(hybrid local binary pattern,HLBP)和基于...根据CSLBP(center-symmetric local binary pattern)和Uniform LBP(local binary pattern)特征描述行人局部纹理互补性的特点,提出将二者级联的组合特征用于行人检测:基于灰度图像的纹理特征(hybrid local binary pattern,HLBP)和基于颜色空间的纹理特征(color based hybrid local binary pattern,CHLBP)。实验结果表明,当FPPW=10–4时,HLBP特征的检测率为93.96%,与Uniform LBP和CSLBP特征相比分别提高3.46%和9.68%,基于颜色空间L′C′C′与HIKSVM分类器结合时的检测率高达98.58%。与传统的纹理特征检测方法相比,该特征提高了行人检测精度,降低了误检率,检测性能得到较大幅度的提升。展开更多
The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relati...The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.展开更多
文摘根据CSLBP(center-symmetric local binary pattern)和Uniform LBP(local binary pattern)特征描述行人局部纹理互补性的特点,提出将二者级联的组合特征用于行人检测:基于灰度图像的纹理特征(hybrid local binary pattern,HLBP)和基于颜色空间的纹理特征(color based hybrid local binary pattern,CHLBP)。实验结果表明,当FPPW=10–4时,HLBP特征的检测率为93.96%,与Uniform LBP和CSLBP特征相比分别提高3.46%和9.68%,基于颜色空间L′C′C′与HIKSVM分类器结合时的检测率高达98.58%。与传统的纹理特征检测方法相比,该特征提高了行人检测精度,降低了误检率,检测性能得到较大幅度的提升。
基金Project(51722401)supported by the National Natural Science Foundation for Excellent Young Scholars of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51734001)supported by the Key Program of National Natural Science Foundation of China
文摘The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.