为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,...为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,根据油中溶解特征气体随时间变化的特点,通过求取嵌入维数确定模型输入量。文章采用实际运行变压器的油中溶解气体分析(Dissolved Gas Analysis,DGA)数据进行仿真分析,并与其他预测方法对比,结果表明,GWO-SVM模型对H 2预测平均相对误差和均方根误差分别为4.38%和9.48μL/L,预测精度高于其他方法。在变压器油中溶解特征气体含量预测的基础上,利用IEC三比值法进行变压器故障诊断,诊断结果与变压器实际故障一致,验证了变压器故障预测方法的实用性和有效性。展开更多
传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Impr...传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Improved Grey Wolf Optimizer,IGWO)优化的支持向量回归机(Support Vector Regression,SVR)检测方法(IGWO-SVR)。首先,通过反向学习策略优化初始化种群分布,改善了灰狼优化算法(Grey Wolf Optimizer,GWO)的全局搜索能力,通过随机差分变异策略扩大狼群动态搜索范围,避免了灰狼优化算法陷入局部最优;然后,将改进后的灰狼优化算法应用于支持向量回归机的核心参数寻优,以改良算法模型的检测性能;最后,与另外3种算法模型的实验结果进行对比分析,结果表明了所提方法在钢筋直径检测中的精度以及优化模型与实际值的拟合度都得到了有效提升。展开更多
PID模糊控制在工业控制中是最广泛的一种控制方法,在一些复杂的实际系统中,应用分数阶PID模糊控制器在整定系统参数性能上优于整数模糊控制器。分数阶模糊控制器具有较多的控制参数,这些控制参数直接影响了模糊控制器的性能。用传统的...PID模糊控制在工业控制中是最广泛的一种控制方法,在一些复杂的实际系统中,应用分数阶PID模糊控制器在整定系统参数性能上优于整数模糊控制器。分数阶模糊控制器具有较多的控制参数,这些控制参数直接影响了模糊控制器的性能。用传统的算法校准分数阶模糊控制器并不能得到最佳的参数值,而且标定参数的过程较为复杂。因此提出用灰狼优化算法(Grey Wolf Optimizer,GWO)优化分数阶模糊控制器的参数。将基于灰狼优化算法的分数阶模糊控制器优化方法与其他五种典型的基于群智能的优化方法进行了比较。实验结果表明,该方法的控制效果更好。展开更多
定量评估航天侦察装备效能是武器装备体系建设的重要环节之一,对装备发展和作战应用具有重要的现实意义。针对评估样本数据少、效能在多指标因素影响下变化规律非线性等条件下的效能评估问题,提出一种基于改进灰狼(improved grey wolf o...定量评估航天侦察装备效能是武器装备体系建设的重要环节之一,对装备发展和作战应用具有重要的现实意义。针对评估样本数据少、效能在多指标因素影响下变化规律非线性等条件下的效能评估问题,提出一种基于改进灰狼(improved grey wolf optimizer,IGWO)算法优化的支持向量回归机(support vector regression,SVR)评估方法(IGWO-SVR)。引入反向学习策略及余弦非线性收敛因子改进灰狼优化算法收敛性能及全局寻优能力,并将其应用于基于支持SVR效能评估参数的优化。基于航天侦察装备特点,构建评估指标体系及航天侦察装备效能评估模型。最后,通过对一定作战想定背景下航天侦察装备效能进行仿真评估,验证了所提方法的合理性及优化模型的有效性。展开更多
文摘为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,根据油中溶解特征气体随时间变化的特点,通过求取嵌入维数确定模型输入量。文章采用实际运行变压器的油中溶解气体分析(Dissolved Gas Analysis,DGA)数据进行仿真分析,并与其他预测方法对比,结果表明,GWO-SVM模型对H 2预测平均相对误差和均方根误差分别为4.38%和9.48μL/L,预测精度高于其他方法。在变压器油中溶解特征气体含量预测的基础上,利用IEC三比值法进行变压器故障诊断,诊断结果与变压器实际故障一致,验证了变压器故障预测方法的实用性和有效性。
文摘传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Improved Grey Wolf Optimizer,IGWO)优化的支持向量回归机(Support Vector Regression,SVR)检测方法(IGWO-SVR)。首先,通过反向学习策略优化初始化种群分布,改善了灰狼优化算法(Grey Wolf Optimizer,GWO)的全局搜索能力,通过随机差分变异策略扩大狼群动态搜索范围,避免了灰狼优化算法陷入局部最优;然后,将改进后的灰狼优化算法应用于支持向量回归机的核心参数寻优,以改良算法模型的检测性能;最后,与另外3种算法模型的实验结果进行对比分析,结果表明了所提方法在钢筋直径检测中的精度以及优化模型与实际值的拟合度都得到了有效提升。
文摘PID模糊控制在工业控制中是最广泛的一种控制方法,在一些复杂的实际系统中,应用分数阶PID模糊控制器在整定系统参数性能上优于整数模糊控制器。分数阶模糊控制器具有较多的控制参数,这些控制参数直接影响了模糊控制器的性能。用传统的算法校准分数阶模糊控制器并不能得到最佳的参数值,而且标定参数的过程较为复杂。因此提出用灰狼优化算法(Grey Wolf Optimizer,GWO)优化分数阶模糊控制器的参数。将基于灰狼优化算法的分数阶模糊控制器优化方法与其他五种典型的基于群智能的优化方法进行了比较。实验结果表明,该方法的控制效果更好。