针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数...针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数规则替代原有线性策略,从而实现从全局搜索到局部搜索的良好过渡;其次,嵌入个体历史最佳信息修改位置搜索方程以指导寻优过程,进一步改善算法的解精度和加快收敛;最后,引入翻筋斗觅食机制生成新的位置以增加群体多样性,从而降低算法陷入局部最优的概率。选取10个高维基准测试函数、10个UCI高维数据集和2个风电机组故障数据集进行仿真实验,并与基本SCA、MSCA(memoryguided SCA)和I-GWO(improved grey wolf optimizer)算法比较,结果表明,iSCA算法在精度和收敛指标上均优于其他比较方法。展开更多
【目的】为解决灰狼优化算法(grey wolf optimization,GWO)收敛精度不高,收敛速度较慢和易陷入局部最优等不足,提出一种融合多策略的黄金正弦灰狼优化算法(golden sine grey wolf optimization,G-GWO)。【方法】首先,利用非线性调整收...【目的】为解决灰狼优化算法(grey wolf optimization,GWO)收敛精度不高,收敛速度较慢和易陷入局部最优等不足,提出一种融合多策略的黄金正弦灰狼优化算法(golden sine grey wolf optimization,G-GWO)。【方法】首先,利用非线性调整收敛因子、动态调整比例权重和引入黄金正弦策略对GWO算法进行改进;然后,选取三类基准测试函数进行寻优实验,并与GWO算法、其他智能优化算法和其他改进GWO算法进行对比,从寻优的收敛精度、鲁棒性和收敛速度方面验证G-GWO算法的优越性;最后,建立板料冲压成形工艺参数与质量参数的BP神经网络(BP neural network,BPNN)代理模型,选用8种算法分别优化BP神经网络的权值和阈值,对比优化后的代理模型精度,验证G-GWO算法在实际工程应用中的有效性。【结果】G-GWO算法在三类基准测试函数的收敛精度、鲁棒性和收敛速度较其他算法均有较大优势,优化后的代理模型最大减薄率相对误差为3.47%,最大增厚率相对误差为4.99%。【结论】改进策略能提高GWO算法的性能,这可作为建立高精度代理模型和后续的板料冲压工艺参数优化的参考。展开更多
文摘针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数规则替代原有线性策略,从而实现从全局搜索到局部搜索的良好过渡;其次,嵌入个体历史最佳信息修改位置搜索方程以指导寻优过程,进一步改善算法的解精度和加快收敛;最后,引入翻筋斗觅食机制生成新的位置以增加群体多样性,从而降低算法陷入局部最优的概率。选取10个高维基准测试函数、10个UCI高维数据集和2个风电机组故障数据集进行仿真实验,并与基本SCA、MSCA(memoryguided SCA)和I-GWO(improved grey wolf optimizer)算法比较,结果表明,iSCA算法在精度和收敛指标上均优于其他比较方法。
文摘【目的】为解决灰狼优化算法(grey wolf optimization,GWO)收敛精度不高,收敛速度较慢和易陷入局部最优等不足,提出一种融合多策略的黄金正弦灰狼优化算法(golden sine grey wolf optimization,G-GWO)。【方法】首先,利用非线性调整收敛因子、动态调整比例权重和引入黄金正弦策略对GWO算法进行改进;然后,选取三类基准测试函数进行寻优实验,并与GWO算法、其他智能优化算法和其他改进GWO算法进行对比,从寻优的收敛精度、鲁棒性和收敛速度方面验证G-GWO算法的优越性;最后,建立板料冲压成形工艺参数与质量参数的BP神经网络(BP neural network,BPNN)代理模型,选用8种算法分别优化BP神经网络的权值和阈值,对比优化后的代理模型精度,验证G-GWO算法在实际工程应用中的有效性。【结果】G-GWO算法在三类基准测试函数的收敛精度、鲁棒性和收敛速度较其他算法均有较大优势,优化后的代理模型最大减薄率相对误差为3.47%,最大增厚率相对误差为4.99%。【结论】改进策略能提高GWO算法的性能,这可作为建立高精度代理模型和后续的板料冲压工艺参数优化的参考。