期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
地下结构中爆炸冲击波峰值压力衰减规律灰色小波预测 被引量:2
1
作者 孙惠香 许金余 范珉 《煤炭学报》 EI CAS CSCD 北大核心 2011年第S2期406-410,共5页
应用灰色预测和小波分解与重构理论结合ANSYS/LS-DYNA非线性动力有限元数值模拟,对不同跨度地下拱形结构在不同垂直起爆距离时结构承受的冲击波峰值压力进行模拟,得到了不同跨度地下结构的冲击波峰值压力变化曲线,并通过数值模拟验证了... 应用灰色预测和小波分解与重构理论结合ANSYS/LS-DYNA非线性动力有限元数值模拟,对不同跨度地下拱形结构在不同垂直起爆距离时结构承受的冲击波峰值压力进行模拟,得到了不同跨度地下结构的冲击波峰值压力变化曲线,并通过数值模拟验证了预测结果的准确性,平均误差为3.44%。 展开更多
关键词 爆炸荷载 峰值压力 灰色小波预测 地下拱形结构
下载PDF
施工场景下灰色小波神经网络短时交通量预测模型研究
2
作者 孙瑶 李挥剑 钱哨 《青海交通科技》 2023年第1期25-30,共6页
在城市道路施工场景下应用短时交通量预测对提高施工区域交通效率及安全水平至关重要。考虑到施工场景下短时交通量历史样本量小且样本呈现非线性的特点,引入灰色预测模型,构建施工场景下的灰色小波神经网络短时交通量预测模型。以行宫... 在城市道路施工场景下应用短时交通量预测对提高施工区域交通效率及安全水平至关重要。考虑到施工场景下短时交通量历史样本量小且样本呈现非线性的特点,引入灰色预测模型,构建施工场景下的灰色小波神经网络短时交通量预测模型。以行宫西大街由西向东断面的交通量数据为例,分别基于小波神经网络短时交通量预测模型、灰色小波神经网络短时交通量预测模型,利用Matlab进行训练。结果显示,灰色小波神经网络短时交通量预测结果的平均绝对误差、平均相对误差和均方误差相较于小波神经网络短时交通量预测模型,分别降低了74.14%、75.21%和92.70%,该模型对城市道路施工场景下的短时交通量预测精确度更高。 展开更多
关键词 城市道路 施工场景 短时交通量预测 灰色小神经网络预测模型
下载PDF
Forecasting freight volume based on wavelet denoising and FG-Markov 被引量:1
3
作者 ZHU Chang-feng WANG Qing-rong +1 位作者 LIU Dao-kuan YE Qian-yun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第3期267-275,共9页
To eliminate the grey bias and improve ant-jamming performance of the standard grey-Markov forecasting model,a forecasting model based on wavelet packet decomposition and fuzzy grey Markov(FG-Markov)is proposed consid... To eliminate the grey bias and improve ant-jamming performance of the standard grey-Markov forecasting model,a forecasting model based on wavelet packet decomposition and fuzzy grey Markov(FG-Markov)is proposed considering the characteristics of randomness and nonlinearility of freight volume forecasting.Firstly,based on the data analysis ability of wavelet packet to non-stationary random signal,wavelet packet decomposition is used to improve the analysis ability of data signal by decomposing historical freight volume data into wavelet packet component.On this basis,FG-Markov chain is proposed to obtain the transfer probability matrix of wavelet packet coefficients by introducing fuzzy grey variables,and forecast the freight volume by reconstructing wavelet packet coefficients.Finally,an example of Lanzhou railroad hub is carried out in order to testify the validity and applicability of this forecasting model.Compared with neural network model and other forecasting models,the proposed forecasting model can improve the forecasting accuracy under the same conditions.The forecasting accuracy of wavelet packet decomposition and FG-Markov is not only greater than that of any other single forecasting models,but also superior to that of other traditional combinational forecasting models,which can meet the actual requirements of freight volume forecasting. 展开更多
关键词 freight volume forecasting fuzzy grey model wavelet packet Markov chain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部