期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
对当前土地流转灰色预期的透视——基于转出土地农户的视角 被引量:4
1
作者 刘歆立 《理论探索》 CSSCI 北大核心 2010年第2期56-59,共4页
在当前以土地集中经营为主要目标的土地流转中,不少地方遭遇到来自转出土地农户的种种阻力。这些阻力与农户对土地流转的灰色预期有很大关系。这些灰色预期表现为对发展土地规模经营总体前景不看好、土地流转后可能导致社会保障丧失、... 在当前以土地集中经营为主要目标的土地流转中,不少地方遭遇到来自转出土地农户的种种阻力。这些阻力与农户对土地流转的灰色预期有很大关系。这些灰色预期表现为对发展土地规模经营总体前景不看好、土地流转后可能导致社会保障丧失、土地流转会造成新的社会不公、土地流转会给自身造成"不经济"的后果及基层政府会采取不负责任的短期行为等。只有正确认识这些灰色预期产生的现实根源,才能寻找出应对其消极影响的有效办法。 展开更多
关键词 土地流转 灰色预期 转出土地农户 规模经营
下载PDF
经济新常态下农民市民化灰色预期及化解 被引量:1
2
作者 刘歆立 靳戈 陈娱 《中国农业会计》 2021年第8期10-12,共3页
农民市民化灰色预期对我国城镇化有着直接的影响,这在当前新冠肺炎疫情尚未缓解的经济新常态下尤为明显。这种灰色预期由于经济波动等宏观经济环境造成的习得性无助心理效应,以及城市化阶段性特点会被放大或加剧。因而,立足于新发展格局... 农民市民化灰色预期对我国城镇化有着直接的影响,这在当前新冠肺炎疫情尚未缓解的经济新常态下尤为明显。这种灰色预期由于经济波动等宏观经济环境造成的习得性无助心理效应,以及城市化阶段性特点会被放大或加剧。因而,立足于新发展格局,不断优化市民化条件环境,加快体现共享理念的户籍制度改革与塑造开放包容的城市文化氛围十分必要。 展开更多
关键词 农民 市民化 灰色预期 经济新常态
下载PDF
影响当前土地流转与合作经营的几种灰色预期论析 被引量:1
3
作者 刘歆立 《兰州学刊》 CSSCI 2010年第6期64-67,共4页
土地合作是培育农民经合组织重要依托。然而,在当前推进土地流转与合作中却遭遇到了来自转出土地农户方的不合作。这些不合作与这些农户的灰色心理预期有很大关系。这些灰色预期包括由于安于现状的思想观念、害怕沦为基层政府追求地方... 土地合作是培育农民经合组织重要依托。然而,在当前推进土地流转与合作中却遭遇到了来自转出土地农户方的不合作。这些不合作与这些农户的灰色心理预期有很大关系。这些灰色预期包括由于安于现状的思想观念、害怕沦为基层政府追求地方政绩的牺牲品、顾虑未来生存保障没有着落、对规模经营后土地收益不公平后果与转出土地后产生的"不经济"的可能后果的担忧等原因而产生的一系列灰色预期。要通过发展出真正符合合作社原则与治理机制的农民专业合作组织并给普通农户带来实实在在的实惠来消除他们的这些灰色期望。 展开更多
关键词 土地流转 农民合作经济 灰色预期 原因分析
下载PDF
因应市民化灰色预期的选择:基本权利优先——以农村宅基地改革中保障农户资格权为例 被引量:1
4
作者 刘歆立 李明娟 《学理论》 2020年第1期12-14,共3页
农民问题是个大问题,在推进城市化与进行农村全面改革中,我们必须既要看到农业转移人口市民化作为国家城乡一体化发展战略带来的巨大发展机遇,又要看到经济新常态与城市化进程自身复杂长期性对农民心理预期与行为取向产生的影响作用,基... 农民问题是个大问题,在推进城市化与进行农村全面改革中,我们必须既要看到农业转移人口市民化作为国家城乡一体化发展战略带来的巨大发展机遇,又要看到经济新常态与城市化进程自身复杂长期性对农民心理预期与行为取向产生的影响作用,基本权利优先与保障农民基本权利是因应当前农民市民化灰色预期的现实理性选择。文章从守住党在农村的政策底线与尊重农民意愿的需要、保证宅基地“三权分置”改革顺利进行、确保农村长期稳定与避免改革后遗症三方面,以保障宅基地农户资格权对于推进农村宅基地“三权分置”改革的前提作用为例进行了解证。 展开更多
关键词 农民 基本权利 灰色预期 农村宅基地
下载PDF
Hybrid grey model to forecast monitoring series with seasonality 被引量:3
5
作者 王琪洁 廖新浩 +3 位作者 周永宏 邹峥嵘 朱建军 彭悦 《Journal of Central South University of Technology》 2005年第5期623-627,共5页
The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) m... The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series. 展开更多
关键词 seasonal index GM(1 1) grey forecasting model time series
下载PDF
Simulation and forecast of the red tide's time series characteristics in China seas
6
作者 SUN Fenglin 《Marine Science Bulletin》 2021年第1期1-16,共16页
Analyzing time series characteristics of red tide is the basis of disaster prevention and mitigation,which is very important to red tide prediction.There are trend comp onents and periodic components in annual time se... Analyzing time series characteristics of red tide is the basis of disaster prevention and mitigation,which is very important to red tide prediction.There are trend comp onents and periodic components in annual time series of occurrence freque ncy and area of red tides,so Gray-Periodic Extensional Combinatorial Model(GPECM)is used to extract these components.The fitting degree of occurrence frequency and area can reach 95.20% and 95.24%,respectively.The performance of GPECM is better than Gray Model,Fourier Series Extension Model,and Holt-Winter Exponential Smoothing Model in model stability.Consequently,it is used to forecast the occurrence frequency and area in 2020 and 2021,and results show that the annual frequency of red tides in 2020 and 2021 can rise to 39 and 41,respectively,and that the annual occurrence area of red tides can rise to 3168 km^(2),which is about 59% more than last year.In 2021,it can fall to 1901 km^(2). 展开更多
关键词 red tides time series characteristics Gray-Periodic Extensional Combinatorial Model
下载PDF
The Study on Agricultural Economy Forecasting using Grey Relationship Model
7
作者 YangWang 《International English Education Research》 2014年第7期112-114,共3页
Thinking of grey group model is the improvement on the traditional grey model. It does not merely use a grey model as the ultimate basis, but takes full account of the traditional GM (1,1) model and the GM (1, n) ... Thinking of grey group model is the improvement on the traditional grey model. It does not merely use a grey model as the ultimate basis, but takes full account of the traditional GM (1,1) model and the GM (1, n) model and join two predictions to form a prediction interval. So, the results are more reasonable and more realistic requirements and have strong guidance and reference. The farther the forecast period is, the worse the forecast is. The forecasts in the forecast period of 1-3 Years are the best, but the results of long-term are only as a reference value and the guidance data. Therefore, as the forecast period goes on, rolling grey model is used to increase accuracy. 展开更多
关键词 agricultural economy grey relation grade grey model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部