For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-te...For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-temperature heat source for conducting MED and select the optimal temperature for it. Both the MED and the low-temperature heat sources studied in this paper were from a typical refinery located in northwestern China. Besides, a new methodology to evaluate heat sources as the optimal candidate was proposed for MED based on the grey system theory. Five process units, which included 18 fluids of the refinery, were named as the evaluation projects. Three factors, which included safety effects, total costs and characteristics of low-temperature heat sources were determined as the evaluation indexes, the values of which were established through the analyses. The results obtained through the grey correlation analyses have revealed that the grey correlation degrees of these units were 0.661(AVDU), 0.732 (#1 FCCU), 0.618 (#2 FCCU), 0.535 (#1 DCU), and 0.572 (#2 DCU), respectively. Thus, the optimal heat source was provided from #1 FCCU. Through further analyses of the fluids from #1 FCCU, the grey correlation degrees of the fluids were 0.597 (oil and gas at top of tower), 0.714 (recycle oil and gas), and 0.512 (diesel), respectively. Thus, the optimal heat source was the oil and gas recycle stream.展开更多
Due to the importance of the social environment impact of highway construction project, an advanced evaluation is required to incorporate situations such as uncertainty, incompatibility and less information. This pape...Due to the importance of the social environment impact of highway construction project, an advanced evaluation is required to incorporate situations such as uncertainty, incompatibility and less information. This paper proposes a gray matter-element evaluation model based on the information entropy. The model is developed by combining both quantitative and qualitative methods, using probability theory to convert quantitative index to qualitative index, and the weight of those indexes were determined through synthesised integral weighting method, integrating matter-element theory, grey theory, and information theory. The model is then applied to evaluate the impact of the social environmental impact of highway construction project which will provide support for decision makers. Cheng-Yu highway and Shen-Da highway were selected for model application, and good results were achieved similar to the real situation.展开更多
基金the Natural Science Foundation(Grant No.51178463)the Fundamental Research Funds for the Central Universities(10CX04018A)of China for financial support of this studythe Environment and Safety Technology Center of China University of Petroleum for its technical and logistical assistance
文摘For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-temperature heat source for conducting MED and select the optimal temperature for it. Both the MED and the low-temperature heat sources studied in this paper were from a typical refinery located in northwestern China. Besides, a new methodology to evaluate heat sources as the optimal candidate was proposed for MED based on the grey system theory. Five process units, which included 18 fluids of the refinery, were named as the evaluation projects. Three factors, which included safety effects, total costs and characteristics of low-temperature heat sources were determined as the evaluation indexes, the values of which were established through the analyses. The results obtained through the grey correlation analyses have revealed that the grey correlation degrees of these units were 0.661(AVDU), 0.732 (#1 FCCU), 0.618 (#2 FCCU), 0.535 (#1 DCU), and 0.572 (#2 DCU), respectively. Thus, the optimal heat source was provided from #1 FCCU. Through further analyses of the fluids from #1 FCCU, the grey correlation degrees of the fluids were 0.597 (oil and gas at top of tower), 0.714 (recycle oil and gas), and 0.512 (diesel), respectively. Thus, the optimal heat source was the oil and gas recycle stream.
文摘Due to the importance of the social environment impact of highway construction project, an advanced evaluation is required to incorporate situations such as uncertainty, incompatibility and less information. This paper proposes a gray matter-element evaluation model based on the information entropy. The model is developed by combining both quantitative and qualitative methods, using probability theory to convert quantitative index to qualitative index, and the weight of those indexes were determined through synthesised integral weighting method, integrating matter-element theory, grey theory, and information theory. The model is then applied to evaluate the impact of the social environmental impact of highway construction project which will provide support for decision makers. Cheng-Yu highway and Shen-Da highway were selected for model application, and good results were achieved similar to the real situation.