Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a co...Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity,which becomes a serious concern especially when a high rate charge/discharge capability is expected.Here,using a modified template-assisted synthesis protocol,which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process,we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control.When used as an anode material,the structurally-controlled hollow sample delivers high reversible capacity(103.7 m A h g^(-1)at 50 C)and extraordinary cycling capability especially at high charge/discharge currents(164.7 m A h g^(-1)after 500 cycles at 10 C).展开更多
基金supported by the National Natural Science Foundation of China (51672282, 21373238)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010101)
文摘Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity,which becomes a serious concern especially when a high rate charge/discharge capability is expected.Here,using a modified template-assisted synthesis protocol,which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process,we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control.When used as an anode material,the structurally-controlled hollow sample delivers high reversible capacity(103.7 m A h g^(-1)at 50 C)and extraordinary cycling capability especially at high charge/discharge currents(164.7 m A h g^(-1)after 500 cycles at 10 C).