In direct sequence spread spectrum communication both for satelliteto-ground and inter-satellite links, the system constrains due to radio frequency spectral occupation, channel data throughput and link performances i...In direct sequence spread spectrum communication both for satelliteto-ground and inter-satellite links, the system constrains due to radio frequency spectral occupation, channel data throughput and link performances in terms of data channel coding which might result in a signal structure where the symbol duration is shorter than the pseudo code period. This can generate some difficulties in the DSSS signal acquisition due to the polarity inversion caused by the data modulation. To eliminate the influence due to polarity inversion, this paper proposes a novel acquisition algorithm based on the simultaneous search of the code phase, data phase and Doppler frequency. In the proposed algorithm the data phase is predicted and the correlation period for the coherent integration can be set equal to the symbol duration. Then non-coherent accumulation over different symbol is implemented in order to enhance the acquisition algorithm sensitivity; the interval of non-coherent accumulation is the least common multiple between the symbol duration and the pseudo code period. The algorithm proposed can largely minimize the SNR loss caused by data polarity inversion and enhance acquisition performance without a noticeable increase in hardware complexity. Theoretical analysis, simulation and measured results verify the validity of the algorithm.展开更多
Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome p...Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.展开更多
基金the support of the National High Technology Research and Development Program of China (863) (Grant No. 2012AA1406)
文摘In direct sequence spread spectrum communication both for satelliteto-ground and inter-satellite links, the system constrains due to radio frequency spectral occupation, channel data throughput and link performances in terms of data channel coding which might result in a signal structure where the symbol duration is shorter than the pseudo code period. This can generate some difficulties in the DSSS signal acquisition due to the polarity inversion caused by the data modulation. To eliminate the influence due to polarity inversion, this paper proposes a novel acquisition algorithm based on the simultaneous search of the code phase, data phase and Doppler frequency. In the proposed algorithm the data phase is predicted and the correlation period for the coherent integration can be set equal to the symbol duration. Then non-coherent accumulation over different symbol is implemented in order to enhance the acquisition algorithm sensitivity; the interval of non-coherent accumulation is the least common multiple between the symbol duration and the pseudo code period. The algorithm proposed can largely minimize the SNR loss caused by data polarity inversion and enhance acquisition performance without a noticeable increase in hardware complexity. Theoretical analysis, simulation and measured results verify the validity of the algorithm.
基金supported by the National Natural Science Foundation of China (21325523, 21527811)the Shandong Province Science Foundation for Youths (ZR2016HQ07)the Award for Team Leader Program of Taishan Scholars of Shandong Province, China
文摘Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.