In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient tempera...In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.展开更多
The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the ...The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.展开更多
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountai...The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.展开更多
This paper describes a non-linear information dynamics model for integrated risk assessment of complex disaster system from an evolution perspective. According to the occurrence and evolution of natural disaster syste...This paper describes a non-linear information dynamics model for integrated risk assessment of complex disaster system from an evolution perspective. According to the occurrence and evolution of natural disaster system with complicated and nonlinear characteristics, a non-linear information dynamics mode is introduced based on the maximum flux principle during modeling process to study the integrated risk assessment of complex disaster system. Based on the non-equilibrium statistical mechanics method, a stochastic evolution equation of this system is established. The integrated risk assessment of complex disaster system can be achieved by giving reasonable weights of each evaluation index to stabilize the system. The new model reveals the formation pattern of risk grade and the dynamics law of evolution. Meanwhile, a method is developed to solve the dynamics evolution equations of complex system through the self-organization feature map algorithm. The proposed method has been used in complex disaster integrated risk assessment for 31 provinces, cities and autonomous regions in China mainland. The results have indicated that the model is objective and effective.展开更多
基金Supported by the National Natural Science Foundation of China(10772029) the Ph.D Programs Foundation of Ministry of Education of China(20050007029) the Independent Research Subject of State Key Laboratory of Explosion Science and Technology(ZDKT08-02)
文摘In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.
文摘The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.
基金supported by the National Basic Research and Development Program of China (Grant No. 973:2011CB409902)the Key Project of National Natural Science Foundation of China (Grant No. 41172321)Southwest Jiaotong University Doctor Innovation Fund
文摘The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.
基金supported by the National Twelfth Five-year Technology Support Projects of China (Grant Nos. 2009BAJ28B04, 2011BAK07B01,2011BAJ08B03, and 2011BAJ08B05)the National Natural Science Foundation of China (Grant No. 51208017)+1 种基金Beijing Postdoctoral Research Foundation (Grant No. 2012ZZ-17)China Postdoctoral Science Foundation Funded Project (Grant No. 2011M500199)
文摘This paper describes a non-linear information dynamics model for integrated risk assessment of complex disaster system from an evolution perspective. According to the occurrence and evolution of natural disaster system with complicated and nonlinear characteristics, a non-linear information dynamics mode is introduced based on the maximum flux principle during modeling process to study the integrated risk assessment of complex disaster system. Based on the non-equilibrium statistical mechanics method, a stochastic evolution equation of this system is established. The integrated risk assessment of complex disaster system can be achieved by giving reasonable weights of each evaluation index to stabilize the system. The new model reveals the formation pattern of risk grade and the dynamics law of evolution. Meanwhile, a method is developed to solve the dynamics evolution equations of complex system through the self-organization feature map algorithm. The proposed method has been used in complex disaster integrated risk assessment for 31 provinces, cities and autonomous regions in China mainland. The results have indicated that the model is objective and effective.