为提高传统数值模拟预报结果的准确性,引入机器学习算法构建一种新型灾害性天气多尺度预测模型。通过降尺度时空融合算法实现遥感数据融合,反演推算得到大气气溶胶光学厚度作为天气预测模型的输入变量。利用包含反向解搜索策略的萤火虫...为提高传统数值模拟预报结果的准确性,引入机器学习算法构建一种新型灾害性天气多尺度预测模型。通过降尺度时空融合算法实现遥感数据融合,反演推算得到大气气溶胶光学厚度作为天气预测模型的输入变量。利用包含反向解搜索策略的萤火虫优化算法,建立预测模型参数寻优策略,应用机器学习的支持向量机算法,构建包含多项式核函数的复杂多尺度预测模型,在考虑各种不确定因素的情况下进行不断训练,最终得到灾害性天气预测结果。使用该模型对2015年6月23日00—24时成都市灾害性天气进行预测,预测结果的ROC(Receiver Operating Characteristic)曲线的AUC(Area Under the Curve)值为0.88,且龙泉驿、新津和金堂站的预测正确率达90%。基于机器学习的灾害性天气多尺度预测模型可为灾害性天气预测提供一种有效手段。展开更多
文摘为提高传统数值模拟预报结果的准确性,引入机器学习算法构建一种新型灾害性天气多尺度预测模型。通过降尺度时空融合算法实现遥感数据融合,反演推算得到大气气溶胶光学厚度作为天气预测模型的输入变量。利用包含反向解搜索策略的萤火虫优化算法,建立预测模型参数寻优策略,应用机器学习的支持向量机算法,构建包含多项式核函数的复杂多尺度预测模型,在考虑各种不确定因素的情况下进行不断训练,最终得到灾害性天气预测结果。使用该模型对2015年6月23日00—24时成都市灾害性天气进行预测,预测结果的ROC(Receiver Operating Characteristic)曲线的AUC(Area Under the Curve)值为0.88,且龙泉驿、新津和金堂站的预测正确率达90%。基于机器学习的灾害性天气多尺度预测模型可为灾害性天气预测提供一种有效手段。