Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ...Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.展开更多
Presently the seismic and rock burst hazard appears still to be important in most of hard coal mines in Poland. Recently, there was a significant increase of seismic activity of the Silesian rock massive, when compare...Presently the seismic and rock burst hazard appears still to be important in most of hard coal mines in Poland. Recently, there was a significant increase of seismic activity of the Silesian rock massive, when compared with the previous years. In the period 1999-2008 the hard coal mines experienced 34 rock bursts. The causes of rockburst occurrence are presented based on the analysis of the rockbursts occurring in the Polish hard coal mines. The scale of the rockburst hazard has been characterized with respect to the mining and geological conditions of the existing exploitation. Of the factors influencing the state of rockburst hazard, the most essential one is considered the depth interval ranging from 600 m to 900 m. The basic factors that promote the rockburst occurrence are as follows: seismogenic strata, edges and remnants, goal, faults, pillars and excessive paneling.展开更多
On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remaine...On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remained unsolved,which is important for disaster prevention.Through the Fourier transform and Hankel transform of the wave equation in cylindrical coordinates,this work established a three-dimensional axisymmetric sound field model based on normal waves,and designed a 4-element helix triangular pyramid array with vertical and horizontal sampling capabilities.Based on this,the three-dimensional matching localization algorithm of infrasound for geological hazards is proposed.Applying the algorithm to the infrasound signal localization of rock and soil layers,it was found that the helix triangular pyramid array can achieve accurate estimation of depth and distance with a smaller number of array elements than the traditional array,and may overcome the azimuth symmetry ambiguity.This study shows the application prospects of this method for predicting geohazards position several hours in advance.展开更多
The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the ...The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.展开更多
Described the main environmental hazards occurring in Polish undergroundmines and their continuous growth in recent years as well as equipment and systemswhich were used for monitoring mine air parameters and geodynam...Described the main environmental hazards occurring in Polish undergroundmines and their continuous growth in recent years as well as equipment and systemswhich were used for monitoring mine air parameters and geodynamic phenomena.Thelatest versions of environmental hazard monitoring systems,having a form of a comprehensiveset of underground and surface equipment,are presented and their functionscharacterized.展开更多
Infrasonic waves (frequency 〈 2o Hz) are generated during the formation and movement of debris flows, traveling in air with a speed far higher than that of the debris-flow movement. Infrasound monitoring and locali...Infrasonic waves (frequency 〈 2o Hz) are generated during the formation and movement of debris flows, traveling in air with a speed far higher than that of the debris-flow movement. Infrasound monitoring and localization of infrasonic waves can serve as warning properties for debris-flows. Based on the characteristics of infrasonic signals, this study presents a three-point array of infrasound sensors as time-synchronous multiple sensors for acquiring signals. In the meantime, the signals are sorted by mutual correlation of signals to figure out their latency, and by means of array coordinating to Locate the sound source to realize the monitoring and positioning of a debris-flows hazard. The method has been in situ tested and has been proven to be accurate in monitoring debris-flow occurrences and determining their positions, which is particularly effective for pre-event warning of debris-flow hazards.展开更多
基金Supported by the Project of National Basic Research Program of China(973 Program)(2005CB221505)the Significant Project of National Natural Science Fund(50534080/E041503)the Project of Coal Mine Gas and Fire Hazard Prevention Major Lab in Henan Province(HKLGF200508)
文摘Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.
文摘Presently the seismic and rock burst hazard appears still to be important in most of hard coal mines in Poland. Recently, there was a significant increase of seismic activity of the Silesian rock massive, when compared with the previous years. In the period 1999-2008 the hard coal mines experienced 34 rock bursts. The causes of rockburst occurrence are presented based on the analysis of the rockbursts occurring in the Polish hard coal mines. The scale of the rockburst hazard has been characterized with respect to the mining and geological conditions of the existing exploitation. Of the factors influencing the state of rockburst hazard, the most essential one is considered the depth interval ranging from 600 m to 900 m. The basic factors that promote the rockburst occurrence are as follows: seismogenic strata, edges and remnants, goal, faults, pillars and excessive paneling.
基金Project(41877219)supported by the National Natural Science Foundation of ChinaProject(cstc2019jcyj-msxmX0585)supported by Natural Science Foundation of Chongqing,ChinaProject(KJ-2018016)supported by Science and Technology Project of Planning and Natural Resources Bureau of Chongqing Government,China。
文摘On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remained unsolved,which is important for disaster prevention.Through the Fourier transform and Hankel transform of the wave equation in cylindrical coordinates,this work established a three-dimensional axisymmetric sound field model based on normal waves,and designed a 4-element helix triangular pyramid array with vertical and horizontal sampling capabilities.Based on this,the three-dimensional matching localization algorithm of infrasound for geological hazards is proposed.Applying the algorithm to the infrasound signal localization of rock and soil layers,it was found that the helix triangular pyramid array can achieve accurate estimation of depth and distance with a smaller number of array elements than the traditional array,and may overcome the azimuth symmetry ambiguity.This study shows the application prospects of this method for predicting geohazards position several hours in advance.
文摘The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.
文摘Described the main environmental hazards occurring in Polish undergroundmines and their continuous growth in recent years as well as equipment and systemswhich were used for monitoring mine air parameters and geodynamic phenomena.Thelatest versions of environmental hazard monitoring systems,having a form of a comprehensiveset of underground and surface equipment,are presented and their functionscharacterized.
基金supported by the National Natural Science Foundation of China(Grant No.41501114)the General Project of Education Department in Sichuan Province(16ZB0104)the Science and Technology Service Network Initiative(No.KFJ-SW-STS-180)
文摘Infrasonic waves (frequency 〈 2o Hz) are generated during the formation and movement of debris flows, traveling in air with a speed far higher than that of the debris-flow movement. Infrasound monitoring and localization of infrasonic waves can serve as warning properties for debris-flows. Based on the characteristics of infrasonic signals, this study presents a three-point array of infrasound sensors as time-synchronous multiple sensors for acquiring signals. In the meantime, the signals are sorted by mutual correlation of signals to figure out their latency, and by means of array coordinating to Locate the sound source to realize the monitoring and positioning of a debris-flows hazard. The method has been in situ tested and has been proven to be accurate in monitoring debris-flow occurrences and determining their positions, which is particularly effective for pre-event warning of debris-flow hazards.