CdSe quantum dots(QDs)hybridized with graphene oxide(GO)are synthesized by a facile chemical precipitation method.The absorption of the CdSe/GO nanocomposite is increased with a significantblue shift with respect to C...CdSe quantum dots(QDs)hybridized with graphene oxide(GO)are synthesized by a facile chemical precipitation method.The absorption of the CdSe/GO nanocomposite is increased with a significantblue shift with respect to CdSe QDs.The specific surface area of the CdSe/GO nanocomposite is10.4m2/g,which is higher than that of CdSe QDs(5m2/g).The PL intensity of the CdSe/GO nanocomposite is lower than that of the CdSe QDs owing to the inhibition of the recombination of electron‐hole pairs in the composite.In Raman analysis,the two bands of the CdSe/GO nanocomposite are shifted to higher wavenumbers with respect to graphene oxide,which is attributed to electron injection that is induced by CdSe QDs into graphene oxide.Using the Brilliant Green dye,the photocatalytic reduction efficiency of CdSe QDs and the CdSe/GO nanocomposite under sunlight irradiation for90min are approximately81.9%and95.5%,respectively.The calculated photodegradation rate constants for CdSe QDs and the CdSe/GO nanocomposite are0.0190min–1and0.0345min–1,respectively.The enhanced photocatalytic activity of the CdSe/GO nanocomposite can be attributed to the high specific surface area and the reduction of electron‐hole pair recombination because of the introduction of graphene oxide.展开更多
基金supported by the National Natural Science Foundation of China(51774259)Engineering Research Center of Nano-Geo Materials of Ministry of Education(NGM2017KF004 and NGM2017KF012)~~
文摘CdSe quantum dots(QDs)hybridized with graphene oxide(GO)are synthesized by a facile chemical precipitation method.The absorption of the CdSe/GO nanocomposite is increased with a significantblue shift with respect to CdSe QDs.The specific surface area of the CdSe/GO nanocomposite is10.4m2/g,which is higher than that of CdSe QDs(5m2/g).The PL intensity of the CdSe/GO nanocomposite is lower than that of the CdSe QDs owing to the inhibition of the recombination of electron‐hole pairs in the composite.In Raman analysis,the two bands of the CdSe/GO nanocomposite are shifted to higher wavenumbers with respect to graphene oxide,which is attributed to electron injection that is induced by CdSe QDs into graphene oxide.Using the Brilliant Green dye,the photocatalytic reduction efficiency of CdSe QDs and the CdSe/GO nanocomposite under sunlight irradiation for90min are approximately81.9%and95.5%,respectively.The calculated photodegradation rate constants for CdSe QDs and the CdSe/GO nanocomposite are0.0190min–1and0.0345min–1,respectively.The enhanced photocatalytic activity of the CdSe/GO nanocomposite can be attributed to the high specific surface area and the reduction of electron‐hole pair recombination because of the introduction of graphene oxide.