The semi-hydrogenation of alkynols to enols is a crucial process in the production of pharmaceuticals,agrochemicals,fragrances,and flavors that involves a complex set of parallel and consecutive isomerization and hydr...The semi-hydrogenation of alkynols to enols is a crucial process in the production of pharmaceuticals,agrochemicals,fragrances,and flavors that involves a complex set of parallel and consecutive isomerization and hydrogenation reactions and proceeds via several key intermediates.In view of the industrial importance of large-scale enol production through alkynol hydrogenation,various noble and non-noble metal(e.g.,Ni and Pd)-based catalysts promoting this transformation have been developed.This paper reviews the design of highly selective catalysts for the semi-hydrogenation of alkynols,focusing on the role of additives,second metals,catalyst supports,and reaction conditions and combining catalytic reaction kinetics with theoretical calculations to establish the reaction mechanism and the decisive factors for boosting selectivity.Finally,a strategy for designing highly efficient and selective catalysts based on the characteristics of aqueous-phase alkynol hydrogenation is proposed.展开更多
Inexpensive and efficient Cu(Ⅰ) catalysis is reported for the synthesis of α-hydroxy ketones from propargylic alcohols, CO2, and water via tandem carboxylative cyclization and nucleophilic addition reaction. Notably...Inexpensive and efficient Cu(Ⅰ) catalysis is reported for the synthesis of α-hydroxy ketones from propargylic alcohols, CO2, and water via tandem carboxylative cyclization and nucleophilic addition reaction. Notably, hydration of propargylic alcohols can be carried out smoothly under atmospheric CO2 pressure, generating a series of α-hydroxy ketones efficiently and selectively. This strategy shows great potential for the preparation of valuable α-hydroxy ketones by using CO2 as a crucial cocatalyst under mild conditions.展开更多
Technological development has led to the emergence of new substances with many different purposes generating a new profile of pollutants in waterways. Among these, endocrine disruptors, such as 17EE (17ct-ethinylestr...Technological development has led to the emergence of new substances with many different purposes generating a new profile of pollutants in waterways. Among these, endocrine disruptors, such as 17EE (17ct-ethinylestradiol), are of great importance due to their wide application and harmful consequences to the environment, human health and animals. The inefficiency of most water treatment processes in withdrawing such substances poses a global concern for the development of effective and environmentally clean methods. The electrochemical remediation processes appear as a powerful and "green" alternative for waste removal of organic or inorganic pollutants from complex environments, such as geosphere and hydrosphere. The research focus in this field is mostly related to the optimization of electronic devices with higher (photo) catalytic efficiency, whereas the starting material remains based on metal and carbon conventional electrodes. In the present study, the anodic removal process of 17ct-ethinylestradiol at carbon cardboards was investigated in stationary and hydrodynamic conditions. The influence of pH and applied potential were evaluated, always taking into account the transposition of scale and environmental aspects. Thus, the principle of hormone removal showed to be strictly related to such parameters. It was observed that mild alkaline medium favors the anodic oxidation, whereas neutral and mild acid ones lead to higher adsorption at carbon surface. Also, when the applied potential was higher than 1.25 V, the electrochemical oxidation rate increased, and the adsorption was decreased. Furthermore, the removal efficiency of ! 7EE showed to be lower, the flow rate was higher.展开更多
A mild and efficient oxidative synthesis of isoindolinones has been realized by Rh(III)‐catalyzed C?H activation of benzamides and[4+1]coupling with propargyl alcohols.This coupling system proceeds with broad substra...A mild and efficient oxidative synthesis of isoindolinones has been realized by Rh(III)‐catalyzed C?H activation of benzamides and[4+1]coupling with propargyl alcohols.This coupling system proceeds with broad substrate scope and mild conditions and provides a new approach to access the useful skeleton ofγ‐lactams with a stereogenic center.展开更多
文摘The semi-hydrogenation of alkynols to enols is a crucial process in the production of pharmaceuticals,agrochemicals,fragrances,and flavors that involves a complex set of parallel and consecutive isomerization and hydrogenation reactions and proceeds via several key intermediates.In view of the industrial importance of large-scale enol production through alkynol hydrogenation,various noble and non-noble metal(e.g.,Ni and Pd)-based catalysts promoting this transformation have been developed.This paper reviews the design of highly selective catalysts for the semi-hydrogenation of alkynols,focusing on the role of additives,second metals,catalyst supports,and reaction conditions and combining catalytic reaction kinetics with theoretical calculations to establish the reaction mechanism and the decisive factors for boosting selectivity.Finally,a strategy for designing highly efficient and selective catalysts based on the characteristics of aqueous-phase alkynol hydrogenation is proposed.
基金supported by National Natural Science Foundation of China(21672119)China Postdoctoral Science Foundation(2018M641624)~~
文摘Inexpensive and efficient Cu(Ⅰ) catalysis is reported for the synthesis of α-hydroxy ketones from propargylic alcohols, CO2, and water via tandem carboxylative cyclization and nucleophilic addition reaction. Notably, hydration of propargylic alcohols can be carried out smoothly under atmospheric CO2 pressure, generating a series of α-hydroxy ketones efficiently and selectively. This strategy shows great potential for the preparation of valuable α-hydroxy ketones by using CO2 as a crucial cocatalyst under mild conditions.
文摘Technological development has led to the emergence of new substances with many different purposes generating a new profile of pollutants in waterways. Among these, endocrine disruptors, such as 17EE (17ct-ethinylestradiol), are of great importance due to their wide application and harmful consequences to the environment, human health and animals. The inefficiency of most water treatment processes in withdrawing such substances poses a global concern for the development of effective and environmentally clean methods. The electrochemical remediation processes appear as a powerful and "green" alternative for waste removal of organic or inorganic pollutants from complex environments, such as geosphere and hydrosphere. The research focus in this field is mostly related to the optimization of electronic devices with higher (photo) catalytic efficiency, whereas the starting material remains based on metal and carbon conventional electrodes. In the present study, the anodic removal process of 17ct-ethinylestradiol at carbon cardboards was investigated in stationary and hydrodynamic conditions. The influence of pH and applied potential were evaluated, always taking into account the transposition of scale and environmental aspects. Thus, the principle of hormone removal showed to be strictly related to such parameters. It was observed that mild alkaline medium favors the anodic oxidation, whereas neutral and mild acid ones lead to higher adsorption at carbon surface. Also, when the applied potential was higher than 1.25 V, the electrochemical oxidation rate increased, and the adsorption was decreased. Furthermore, the removal efficiency of ! 7EE showed to be lower, the flow rate was higher.
基金supported by the Dalian Institute of Chemical Physics,Chinese Academy of Sciencesthe National Natural Science Foundation of China (21525208,21472186)~~
文摘A mild and efficient oxidative synthesis of isoindolinones has been realized by Rh(III)‐catalyzed C?H activation of benzamides and[4+1]coupling with propargyl alcohols.This coupling system proceeds with broad substrate scope and mild conditions and provides a new approach to access the useful skeleton ofγ‐lactams with a stereogenic center.