Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 c...Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.展开更多
The mercury removal performance of modified bamboo charcoal (BC) was investigated with a bench-scale fixedbed reactor, A simple impregnation method was used to modify the BC with ZnCI2 and FeCI3 separately. BET and ...The mercury removal performance of modified bamboo charcoal (BC) was investigated with a bench-scale fixedbed reactor, A simple impregnation method was used to modify the BC with ZnCI2 and FeCI3 separately. BET and XPS were used to determine the pore structure and surface chemistry of the sorbents. The role of Fe3 + in the removal of elemental mercury by modified sorbents was discussed. The experimental results suggest that the modified BCs have excellent adsorption potential for elemental mercury at a relatively higher temperature, 140 ℃. The BET surface area and average pore size of modified sorbents do not show noticeable priority compared to unmodified BC, XPS spectra indicate that Fe atoms mainly exist in the form of Fe3 + for the FeC1j-impregnated BC. Better performance of FeCl3-impregnated BC at different temperatures (20, 140 and 180 ℃) suggests the enhancement of non-chloride functional groups (Fe3 +). Inhibition effect of SOx and NO for Hg removal by BC samples is present in the study.展开更多
We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across G...We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science.展开更多
This work evaluated the complexation capacity, exchange constants and availability of micronutrients for plants and humic substances extracted from peat samples. Samples of humic substances extracted from two tropical...This work evaluated the complexation capacity, exchange constants and availability of micronutrients for plants and humic substances extracted from peat samples. Samples of humic substances extracted from two tropical peats (HS-P1 and HS-P2) were enriched with the micronutrients Cu(II), Co(II), Fe(II), Mn(II), Ni(II) and Zn(II) and the parameters for formation of the complexes (HS-N) were evaluated at different pH. The Scatchard model was used to calculate the maximum complexation capacity and the nutrient availability was studied using exchange capacity experiments based on ultrafiltration procedure. The optimum pH for complexation was 4.5 and the order of affinity was: Fe(II) 〉 Cu(II) 〉 Co(II) 〉 Mn(II) = Ni(II) 〉 Zn(II). The maximum complexation capacity reached 56.8 mg·g-1 Fe of HS-P1 (the highest) and 1.7 mg.g1 Zn of HS-P2 (the slightest). The exchange experiments showed that HS-P-Fe complexes were formed preferentially. The least stable complex was formed with Zn, which was therefore, more easily available. The results contribute to understand the behavior and availability of some nutrients in soils.展开更多
According to the lithological assemblages and elemental geochemistry of the measured profile,the authors studied the sedimentary and tectonic environment of the Late Carboniferous Tangjiatun Formation in Acheng. The r...According to the lithological assemblages and elemental geochemistry of the measured profile,the authors studied the sedimentary and tectonic environment of the Late Carboniferous Tangjiatun Formation in Acheng. The results show that the trace elements of mudstone samples from Tangjiatun Formation have the characteristics of high Th,V and Cu,but low Ba,Nb and Sr. The rare earth elements are characterized by significantly light and heavy rare earth elements differentiation,relative enrichment of light rare earth elements,and a negative anomaly of δEu. The Tangjiatun Formation belongs to a marine and delta sedimentary environment,and its tectonic setting is considered as a continental island arc environment.展开更多
文摘Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.
基金Supported by the Huaneng Group Headquarters(HNKJ14-H10)China Postdoctoral Science Foundation(2013M542373)
文摘The mercury removal performance of modified bamboo charcoal (BC) was investigated with a bench-scale fixedbed reactor, A simple impregnation method was used to modify the BC with ZnCI2 and FeCI3 separately. BET and XPS were used to determine the pore structure and surface chemistry of the sorbents. The role of Fe3 + in the removal of elemental mercury by modified sorbents was discussed. The experimental results suggest that the modified BCs have excellent adsorption potential for elemental mercury at a relatively higher temperature, 140 ℃. The BET surface area and average pore size of modified sorbents do not show noticeable priority compared to unmodified BC, XPS spectra indicate that Fe atoms mainly exist in the form of Fe3 + for the FeC1j-impregnated BC. Better performance of FeCl3-impregnated BC at different temperatures (20, 140 and 180 ℃) suggests the enhancement of non-chloride functional groups (Fe3 +). Inhibition effect of SOx and NO for Hg removal by BC samples is present in the study.
文摘We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science.
文摘This work evaluated the complexation capacity, exchange constants and availability of micronutrients for plants and humic substances extracted from peat samples. Samples of humic substances extracted from two tropical peats (HS-P1 and HS-P2) were enriched with the micronutrients Cu(II), Co(II), Fe(II), Mn(II), Ni(II) and Zn(II) and the parameters for formation of the complexes (HS-N) were evaluated at different pH. The Scatchard model was used to calculate the maximum complexation capacity and the nutrient availability was studied using exchange capacity experiments based on ultrafiltration procedure. The optimum pH for complexation was 4.5 and the order of affinity was: Fe(II) 〉 Cu(II) 〉 Co(II) 〉 Mn(II) = Ni(II) 〉 Zn(II). The maximum complexation capacity reached 56.8 mg·g-1 Fe of HS-P1 (the highest) and 1.7 mg.g1 Zn of HS-P2 (the slightest). The exchange experiments showed that HS-P-Fe complexes were formed preferentially. The least stable complex was formed with Zn, which was therefore, more easily available. The results contribute to understand the behavior and availability of some nutrients in soils.
文摘According to the lithological assemblages and elemental geochemistry of the measured profile,the authors studied the sedimentary and tectonic environment of the Late Carboniferous Tangjiatun Formation in Acheng. The results show that the trace elements of mudstone samples from Tangjiatun Formation have the characteristics of high Th,V and Cu,but low Ba,Nb and Sr. The rare earth elements are characterized by significantly light and heavy rare earth elements differentiation,relative enrichment of light rare earth elements,and a negative anomaly of δEu. The Tangjiatun Formation belongs to a marine and delta sedimentary environment,and its tectonic setting is considered as a continental island arc environment.