Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian...Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the special natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.展开更多
By the microseismic (MS) monitoring system of Sanhejian Coal Mine,the detail MS activity rules in the entire mining process of 9202 strong rockburst working face were studied,following main conclusions were obtained.(...By the microseismic (MS) monitoring system of Sanhejian Coal Mine,the detail MS activity rules in the entire mining process of 9202 strong rockburst working face were studied,following main conclusions were obtained.(1) The strong correlation between MS activity and the region stress gradient was revealed.The higher the region stress gradient, the stronger the MS signal is,and the frequency-spectrum moves to lower frequency band the amplitude begins to add gradually.(2) The different types of MS signals have the cor- responding frequency-spectrum character.Such as relieve-shot MS signal shows the wide frequency-spectrum,multi-peak high frequency character,while rockburst omen signal shows the low frequency and amplitude,the mainshock signal has relatively higher fre- quency and amplitude.(3) To monitor and recognize rockburst dangerous region,the strong consistence between the MS signal intensity and the amplitude of electromagnetic emission (EME) signal and drilling bits measured was observed.On above,the weakening and controlling technology of MS intensity was put forward.展开更多
Streamflow in the Kuye River basin has been sharply reduced by the effects of climate change and human activities.Since 1997,the intensification of coal mining has resulted in substantial reductions to streamflow alon...Streamflow in the Kuye River basin has been sharply reduced by the effects of climate change and human activities.Since 1997,the intensification of coal mining has resulted in substantial reductions to streamflow alongside an ever-increasing demand for water.In this study,we present a derived statistical method,incorporating the Mann-Kendall and Pettitt method(MK-P) and the Soil and Water Assessment Tool(SWAT),and apply it to estimating the streamflow reductions caused by underground mining for coal in the Kuye River basin.The results show that underground mining is an important cause of the streamflow reductions observed since1997,being responsible for reductions of 21.15 mm/yr(~56%of the total) during 1997-2009.The results of the SWAT simulation were assessed by several performance criteria:Nash-Suttcliffe Efficiency(Nse),correlation coefficient(R^2),relative error(RE),P-factor and Pv-factor.The close match between the simulations and observed data supports the reasonability of our findings.We suggest that engineering strategies be adopted to limit streamflow loss into goafs via fractured zones in the coalfield.展开更多
基金Project BK2008128 supported by the Natural Science Foundation of Jiangsu Province
文摘Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the special natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.
基金the National Key Project of Scientific and Technical Supporting Programs(2006BAK04B02,2006BAK03B06)
文摘By the microseismic (MS) monitoring system of Sanhejian Coal Mine,the detail MS activity rules in the entire mining process of 9202 strong rockburst working face were studied,following main conclusions were obtained.(1) The strong correlation between MS activity and the region stress gradient was revealed.The higher the region stress gradient, the stronger the MS signal is,and the frequency-spectrum moves to lower frequency band the amplitude begins to add gradually.(2) The different types of MS signals have the cor- responding frequency-spectrum character.Such as relieve-shot MS signal shows the wide frequency-spectrum,multi-peak high frequency character,while rockburst omen signal shows the low frequency and amplitude,the mainshock signal has relatively higher fre- quency and amplitude.(3) To monitor and recognize rockburst dangerous region,the strong consistence between the MS signal intensity and the amplitude of electromagnetic emission (EME) signal and drilling bits measured was observed.On above,the weakening and controlling technology of MS intensity was put forward.
基金supported by the National Natural Science Foundation of China(Grant Nos.51309107,E090105,41130639 and 51179045)the Public Welfare Program(Grant Nos.201501022 and 201301068)+1 种基金the Fundamental Research Funds for the Central Public Welfare Research Institutes(Grant No.HKY-JBYW-2013-19)the Fundamental Research Funds for the Central Universities(Grant Nos.2014B34914 and 2015B28514)
文摘Streamflow in the Kuye River basin has been sharply reduced by the effects of climate change and human activities.Since 1997,the intensification of coal mining has resulted in substantial reductions to streamflow alongside an ever-increasing demand for water.In this study,we present a derived statistical method,incorporating the Mann-Kendall and Pettitt method(MK-P) and the Soil and Water Assessment Tool(SWAT),and apply it to estimating the streamflow reductions caused by underground mining for coal in the Kuye River basin.The results show that underground mining is an important cause of the streamflow reductions observed since1997,being responsible for reductions of 21.15 mm/yr(~56%of the total) during 1997-2009.The results of the SWAT simulation were assessed by several performance criteria:Nash-Suttcliffe Efficiency(Nse),correlation coefficient(R^2),relative error(RE),P-factor and Pv-factor.The close match between the simulations and observed data supports the reasonability of our findings.We suggest that engineering strategies be adopted to limit streamflow loss into goafs via fractured zones in the coalfield.