Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal...Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.展开更多
It is studied that reactivity of petroleum catalytic slurry (PCS) and coal with Fe catalyst in 1 L autoclave, the fol- lowing is mainly discussed, coal conversion and asphalt properties, especially related with petr...It is studied that reactivity of petroleum catalytic slurry (PCS) and coal with Fe catalyst in 1 L autoclave, the fol- lowing is mainly discussed, coal conversion and asphalt properties, especially related with petroleum cracking slurry (PCS) properties. The results show that co-processing conversion and asphalt yield increase with the increase of PCS ratio. PCS prop- erties have important effect on coal conversion and asphalt properties. One kind of PCS shows negative effect on coal conver- sion. High aromatic PCS can lead to high ductility asphalt with good colloid properties. Coal and the PCS can lead to a strong matching effect.展开更多
In China,the economic systems of many small-scale resource-based regions are confronted with realizing sustainable development through economic transformation. This paper,taking 37 coal-resource-based counties in Chin...In China,the economic systems of many small-scale resource-based regions are confronted with realizing sustainable development through economic transformation. This paper,taking 37 coal-resource-based counties in China as objects,evaluates the economic transformation capacities of the counties by principal component analysis (PCA). Based on the comprehensive principal component values of >1,0–1 and <0,the economic transformation capacities of the counties are classified into strong,common and weak grades. Then,the paper proposes the developmental countermeasures according to different transformation capacities. For the counties with strong transformation capacities,it is crucial to make scientific positioning and rationally exploite resources in view of the developing characteristics and modes of those counties; as for the counties with common transformation capacities,the preparation and perfection of basic transformation conditions are still important aspects; as for the counties with weak transformation capacities,shifting from ″passive transfromation″ to ″active transformation″ in light of resources conditions is necessary.展开更多
The idea of the transformation of coal in underground into synthetic gas so-called syngas is interested in world in many centuries. Underground Coal Gasification (UCG) is an in-situ technique to recover the fuel or ...The idea of the transformation of coal in underground into synthetic gas so-called syngas is interested in world in many centuries. Underground Coal Gasification (UCG) is an in-situ technique to recover the fuel or feedstock value of coal that is not economically available through conventional recovery technologies. Today, less than one sixth of the world's coal is economically accessible. Today, similarly to all other countries in the world also in Slovakia there is an interest in the revival and perfection of the UCG technology. From the viewpoint of content the research is directed toward to increasing heating capacity of syngas. From the standpoint of the methods used the research can be divided into 2 approaches: experiments in UCG laboratory and mathematical modeling, including simulation studies. Both approaches have helped to discover complicated relationships during UCG and they will be the subject of this paper. The most important factors are methods, the humidity of the coal, heat losses, temperatures in relevant zones, the composition of oxidation agents and the permeability of the coal. The calorific value of syngas was found generally to be 0.55-4.45 MJ.Nm^-3 with a maximum of 25.51 MJ.m^-3 if only air is used as the oxidation agent. Where a mixture of air and oxygen is used, calorific values in the range 0.43-6.38 MJ.m^-3 were generally obtained, with maximum 27.53 MJ·m^-3. Analysis was carried out on these big differences in order to improve UCG.展开更多
It is already well known that availability of petroleum oil, as a world energy source, is running low. Much work has been done by experts to produce renewable energy, especially using vegetable oil as a raw material. ...It is already well known that availability of petroleum oil, as a world energy source, is running low. Much work has been done by experts to produce renewable energy, especially using vegetable oil as a raw material. Accordingly, this paper presents preparation and activity test of Cu catalyst using coconut shell activated carbon (AC) as a support, for conversion of n-pentanol and n-butanol to their alkenes as the first step of conversion of ethanol to biogasoline. This conversion is interesting due to any agriculture product containing sugar or starch can be converted to ethanol. Activated carbon was used as a catalyst support because this material is inert; hence, it would not yield unexpected side product, and pollution of environment with the used catalyst can be prevented because the used catalytic metal can easily be recovered. Results of the work showed that coconut shell carbon contained some metals, which disturbed in preparation catalyst by cation exchange process. Washing the carbon with ammonium acetate or HCI solution could reduce the metals content more compared to using water, with optimum concentration for ammonium acetate solution was 1.25 M. Application of Cu/AC in converting n-pentanol and n-butanol, based on qualitative analysis to the products using GLC, GC-MS, and FTIR, when n-pentanol and nitrogen gas were flowed into a reactor filled with Cu/AC catalyst, it could be converted to n-pentene with 200 ℃ as the optimal temperature. While when n-butanol and nitrogen gas were flowed into a reactor filled with more Cu/AC catalyst, the product was supposed to contain its aldehyde and butyl vinyl ether.展开更多
Exhaustion of profitable coal resources makes for need of innovation including underground coal gasification(UCG).One of the most important problems of UCG is evaluation of the combustion area in underground coal seam...Exhaustion of profitable coal resources makes for need of innovation including underground coal gasification(UCG).One of the most important problems of UCG is evaluation of the combustion area in underground coal seams.Physicochemical parameters of coal,in a whole,and coal mineral substance are changed under heating and combusting.Thermo-chemical conversion of coal mineral components has an effect on magnetic characteristics of coal seam and can be used for real-time control of combusting area.To this guessing check laboratory experiments have been made as an activity of the Far Eastern Federal University.Our investigation based on a theoretical analysis and laboratory simulation tests.Typical results of the laboratory experiments are presented below.Under heating coal thermo-chemical magnetization is forming.Coal's magnetic parameters varieties from anti-ferromagnetiсto ferromagnetic.Anti-ferromagnetic pyrite and siderite presented into coal mass is transformed into magnetic hematite and magnetite under heating.Therefore,geomagnetic is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration for underground coal gasification.展开更多
A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. Th...A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. The process consists of three steps: 1concentrating alumina from the coal gangue via activation roasting followed by alkali leaching of Si O2 which produces alumina concentrate for alumina extraction by the Bayer process; 2) synthesizing tobermorite whiskers from the filtrated alkali liquo containing silicate via a hydrothermal method and reusing excess caustic liquor; and 3) enriching titanium component from the Baye process residue by sulfuric acid leaching. Alumina concentrate with 69.5% Al_2O_3 and mass ratio of alumina to silica(A/S) of 5.9pure 1.1 nm tobermorite whisker and TiO_2-rich material containing 33% TiO_2 are produced, respectively, with the optimal parameters Besides, the actual alumina digestion ratio of alumina concentrate reaches 80.4% at 270 oC for 40 min in the Bayer process.展开更多
The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery techno...The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery technology with stamping charger for stamping and preparation a blend of coals for charging and coking. Stamping technology adds several benefits to the process, such as increased density, homogeneity and alignment of the coal cake charged into the oven, as well as provides better control of the coking process, improves parameters of coke quality and allows coal blending with lower coking power, thereby reducing the production cost of coke and power generation. Through the automation of stamping charger, it is possible to evaluate and calculate the stamped coal density charged and the productivity gains this system provides.展开更多
The COVID-19 pandemic encouraged the use of plastic-based personal protective equipment (PPE), which aidedgreatly in its management. However, the increased production and usage of these PPEs put a strain on the enviro...The COVID-19 pandemic encouraged the use of plastic-based personal protective equipment (PPE), which aidedgreatly in its management. However, the increased production and usage of these PPEs put a strain on the environment,especially in developing and underdeveloped countries. This has led various researchers to study low-costand effective technologies for the recycling of these materials. One such material is disposable facemasks. However,previous studies have only been able to engage electrically powered reactors for their thermochemical conversion,which is a challenge as these reactors cannot be used in regions with an insufficient supply of electricity. In thisstudy, the authors utilized a biomass-powered reactor for the conversion of waste disposable facemasks and almondleaves into hybrid biochar. The reactor, which is relatively cheap, simple to use, environmentally friendly, and modifiedfor biochar production, is biomass-powered. The co-carbonization process, which lasted 100 min, produced a 46%biochar yield, which is higher than previously obtained biochar yields by other researchers. The biochar thus obtainedwas characterized to determine its properties. FTIR analysis showed that the biochar contained functional groupssuch as alkenes, alkynes, hydroxyls, amines, and carbonyls. The EDX analysis revealed that the biochar was primarilymade of carbon, tellurium, oxygen, and calcium in the ratios of 57%, 19%, 9%, and 7%, respectively. The inclusion ofthe facemask decreased the surface area and porosity of the biochar material, as evidenced by its surface area andpore characteristics.展开更多
基金Acknowledgements The authors gratefully acknowledge the funding support from the National Key Basic Research Program of China (2013CB228500), the National Natural Science Foundation of Chi- na (71203119), and the Advanced Coal Technology Consortium of CERC (2016YFE0102500).
文摘Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.
文摘It is studied that reactivity of petroleum catalytic slurry (PCS) and coal with Fe catalyst in 1 L autoclave, the fol- lowing is mainly discussed, coal conversion and asphalt properties, especially related with petroleum cracking slurry (PCS) properties. The results show that co-processing conversion and asphalt yield increase with the increase of PCS ratio. PCS prop- erties have important effect on coal conversion and asphalt properties. One kind of PCS shows negative effect on coal conver- sion. High aromatic PCS can lead to high ductility asphalt with good colloid properties. Coal and the PCS can lead to a strong matching effect.
基金Under the auspices of Key Program of National Natural Science Foundation of China (No. 40635030)
文摘In China,the economic systems of many small-scale resource-based regions are confronted with realizing sustainable development through economic transformation. This paper,taking 37 coal-resource-based counties in China as objects,evaluates the economic transformation capacities of the counties by principal component analysis (PCA). Based on the comprehensive principal component values of >1,0–1 and <0,the economic transformation capacities of the counties are classified into strong,common and weak grades. Then,the paper proposes the developmental countermeasures according to different transformation capacities. For the counties with strong transformation capacities,it is crucial to make scientific positioning and rationally exploite resources in view of the developing characteristics and modes of those counties; as for the counties with common transformation capacities,the preparation and perfection of basic transformation conditions are still important aspects; as for the counties with weak transformation capacities,shifting from ″passive transfromation″ to ″active transformation″ in light of resources conditions is necessary.
文摘The idea of the transformation of coal in underground into synthetic gas so-called syngas is interested in world in many centuries. Underground Coal Gasification (UCG) is an in-situ technique to recover the fuel or feedstock value of coal that is not economically available through conventional recovery technologies. Today, less than one sixth of the world's coal is economically accessible. Today, similarly to all other countries in the world also in Slovakia there is an interest in the revival and perfection of the UCG technology. From the viewpoint of content the research is directed toward to increasing heating capacity of syngas. From the standpoint of the methods used the research can be divided into 2 approaches: experiments in UCG laboratory and mathematical modeling, including simulation studies. Both approaches have helped to discover complicated relationships during UCG and they will be the subject of this paper. The most important factors are methods, the humidity of the coal, heat losses, temperatures in relevant zones, the composition of oxidation agents and the permeability of the coal. The calorific value of syngas was found generally to be 0.55-4.45 MJ.Nm^-3 with a maximum of 25.51 MJ.m^-3 if only air is used as the oxidation agent. Where a mixture of air and oxygen is used, calorific values in the range 0.43-6.38 MJ.m^-3 were generally obtained, with maximum 27.53 MJ·m^-3. Analysis was carried out on these big differences in order to improve UCG.
文摘It is already well known that availability of petroleum oil, as a world energy source, is running low. Much work has been done by experts to produce renewable energy, especially using vegetable oil as a raw material. Accordingly, this paper presents preparation and activity test of Cu catalyst using coconut shell activated carbon (AC) as a support, for conversion of n-pentanol and n-butanol to their alkenes as the first step of conversion of ethanol to biogasoline. This conversion is interesting due to any agriculture product containing sugar or starch can be converted to ethanol. Activated carbon was used as a catalyst support because this material is inert; hence, it would not yield unexpected side product, and pollution of environment with the used catalyst can be prevented because the used catalytic metal can easily be recovered. Results of the work showed that coconut shell carbon contained some metals, which disturbed in preparation catalyst by cation exchange process. Washing the carbon with ammonium acetate or HCI solution could reduce the metals content more compared to using water, with optimum concentration for ammonium acetate solution was 1.25 M. Application of Cu/AC in converting n-pentanol and n-butanol, based on qualitative analysis to the products using GLC, GC-MS, and FTIR, when n-pentanol and nitrogen gas were flowed into a reactor filled with Cu/AC catalyst, it could be converted to n-pentene with 200 ℃ as the optimal temperature. While when n-butanol and nitrogen gas were flowed into a reactor filled with more Cu/AC catalyst, the product was supposed to contain its aldehyde and butyl vinyl ether.
文摘Exhaustion of profitable coal resources makes for need of innovation including underground coal gasification(UCG).One of the most important problems of UCG is evaluation of the combustion area in underground coal seams.Physicochemical parameters of coal,in a whole,and coal mineral substance are changed under heating and combusting.Thermo-chemical conversion of coal mineral components has an effect on magnetic characteristics of coal seam and can be used for real-time control of combusting area.To this guessing check laboratory experiments have been made as an activity of the Far Eastern Federal University.Our investigation based on a theoretical analysis and laboratory simulation tests.Typical results of the laboratory experiments are presented below.Under heating coal thermo-chemical magnetization is forming.Coal's magnetic parameters varieties from anti-ferromagnetiсto ferromagnetic.Anti-ferromagnetic pyrite and siderite presented into coal mass is transformed into magnetic hematite and magnetite under heating.Therefore,geomagnetic is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration for underground coal gasification.
基金Projects(51234008,51174230)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0515)supported by the Program for New Century Excellent Talents in University,ChinaProject supported by Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. The process consists of three steps: 1concentrating alumina from the coal gangue via activation roasting followed by alkali leaching of Si O2 which produces alumina concentrate for alumina extraction by the Bayer process; 2) synthesizing tobermorite whiskers from the filtrated alkali liquo containing silicate via a hydrothermal method and reusing excess caustic liquor; and 3) enriching titanium component from the Baye process residue by sulfuric acid leaching. Alumina concentrate with 69.5% Al_2O_3 and mass ratio of alumina to silica(A/S) of 5.9pure 1.1 nm tobermorite whisker and TiO_2-rich material containing 33% TiO_2 are produced, respectively, with the optimal parameters Besides, the actual alumina digestion ratio of alumina concentrate reaches 80.4% at 270 oC for 40 min in the Bayer process.
文摘The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery technology with stamping charger for stamping and preparation a blend of coals for charging and coking. Stamping technology adds several benefits to the process, such as increased density, homogeneity and alignment of the coal cake charged into the oven, as well as provides better control of the coking process, improves parameters of coke quality and allows coal blending with lower coking power, thereby reducing the production cost of coke and power generation. Through the automation of stamping charger, it is possible to evaluate and calculate the stamped coal density charged and the productivity gains this system provides.
文摘The COVID-19 pandemic encouraged the use of plastic-based personal protective equipment (PPE), which aidedgreatly in its management. However, the increased production and usage of these PPEs put a strain on the environment,especially in developing and underdeveloped countries. This has led various researchers to study low-costand effective technologies for the recycling of these materials. One such material is disposable facemasks. However,previous studies have only been able to engage electrically powered reactors for their thermochemical conversion,which is a challenge as these reactors cannot be used in regions with an insufficient supply of electricity. In thisstudy, the authors utilized a biomass-powered reactor for the conversion of waste disposable facemasks and almondleaves into hybrid biochar. The reactor, which is relatively cheap, simple to use, environmentally friendly, and modifiedfor biochar production, is biomass-powered. The co-carbonization process, which lasted 100 min, produced a 46%biochar yield, which is higher than previously obtained biochar yields by other researchers. The biochar thus obtainedwas characterized to determine its properties. FTIR analysis showed that the biochar contained functional groupssuch as alkenes, alkynes, hydroxyls, amines, and carbonyls. The EDX analysis revealed that the biochar was primarilymade of carbon, tellurium, oxygen, and calcium in the ratios of 57%, 19%, 9%, and 7%, respectively. The inclusion ofthe facemask decreased the surface area and porosity of the biochar material, as evidenced by its surface area andpore characteristics.