We give the topology changing of the silhouette in 3D space while others study the projections in an image. Silhou- ettes play a crucial role in visualization, graphics and vision. This work focuses on the global beha...We give the topology changing of the silhouette in 3D space while others study the projections in an image. Silhou- ettes play a crucial role in visualization, graphics and vision. This work focuses on the global behaviors of silhouettes, especially their topological evolutions, such as splitting, merging, appearing and disappearing. The dynamics of silhouettes are governed by the topology, the curvature of the surface, and the view point. In this paper, we work on a more theoretical level to give enu- merative properties of the silhouette including: the integration of signed geodesic curvature along a silhouette is equal to the view cone angle; in elliptic regions, no silhouette can be contained in another one; in hyperbolic regions, if a silhouette is homotopic to a point, then it has at least 4 cusps; finally, critical events can only happen when the view point is on the aspect surfaces (ruled surface of the asymptotic lines of parabolic points with surface itself). We also introduce a method to visualize the evolution of silhouettes, especially all the critical events where the topologies of the silhouettes change. The results have broad applications in computer vision for recognition, graphics for rendering and visualization.展开更多
A subset of the vertex set of a graph is a feedback vertex set of the graph ifthe resulting graph is a forest after removing the vertex subset from the graph.In thispaper, we study the minimum-weight feedback vertex s...A subset of the vertex set of a graph is a feedback vertex set of the graph ifthe resulting graph is a forest after removing the vertex subset from the graph.In thispaper, we study the minimum-weight feedback vertex set problem in outerplanar graphs and present a linear time algorithm to solve it.展开更多
Assembly variation analysis of parts that have flexible curved surfaces is much more difficult than that of solid bodies, because of structural deformations in the assembly process. Most of the current variation analy...Assembly variation analysis of parts that have flexible curved surfaces is much more difficult than that of solid bodies, because of structural deformations in the assembly process. Most of the current variation analysis methods either neglect the relationships among feature points on part surfaces or regard the distribution of all feature points as the same. In this study, the problem of flexible curved surface assembly is simplified to the matching of side lines. A methodology based on Bézier curves is proposed to represent the side lines of surfaces. It solves the variation analysis problem of flexible curved surface assembly when considering surface continuity through the relations between control points and data points. The deviations of feature points on side lines are obtained through control point distribution and are then regarded as inputs in commercial finite element analysis software to calculate the final product deformations. Finally, the proposed method is illustrated in two cases of antenna surface assembly.展开更多
In this paper, we present a novel geometric method for efficiently and robustly computing intersections between a ray and a triangular Bezier patch defined over a triangular domain, called the hybrid clipping (HC) a...In this paper, we present a novel geometric method for efficiently and robustly computing intersections between a ray and a triangular Bezier patch defined over a triangular domain, called the hybrid clipping (HC) algorithm. If the ray pierces the patch only once, we locate the parametric value of the intersection to a smaller triangular domain, which is determined by pairs of lines and quadratic curves, by using a multi-degree reduction method. The triangular domain is iteratively clipped into a smaller one by combining a subdivision method, until the domain size reaches a prespecified threshold. When the ray intersects the patch more than once, Descartes' rule of signs and a split step are required to isolate the intersection points. The algorithm can be proven to clip the triangular domain with a cubic convergence rate after an appropriate preprocessing procedure. The proposed algorithm has many attractive properties, such as the absence of an initial guess and insensitivity to small changes in coefficients of the original problem. Experiments have been conducted to illustrate the efficacy of our method in solving ray-triangular Bezier patch intersection problems.展开更多
基金Project supported by the NSF CAREER Award (Nos. CCF-0448339 and DMS-0528363) of the USAthe National Natural Science Foundation of China (No. 60503067)
文摘We give the topology changing of the silhouette in 3D space while others study the projections in an image. Silhou- ettes play a crucial role in visualization, graphics and vision. This work focuses on the global behaviors of silhouettes, especially their topological evolutions, such as splitting, merging, appearing and disappearing. The dynamics of silhouettes are governed by the topology, the curvature of the surface, and the view point. In this paper, we work on a more theoretical level to give enu- merative properties of the silhouette including: the integration of signed geodesic curvature along a silhouette is equal to the view cone angle; in elliptic regions, no silhouette can be contained in another one; in hyperbolic regions, if a silhouette is homotopic to a point, then it has at least 4 cusps; finally, critical events can only happen when the view point is on the aspect surfaces (ruled surface of the asymptotic lines of parabolic points with surface itself). We also introduce a method to visualize the evolution of silhouettes, especially all the critical events where the topologies of the silhouettes change. The results have broad applications in computer vision for recognition, graphics for rendering and visualization.
文摘A subset of the vertex set of a graph is a feedback vertex set of the graph ifthe resulting graph is a forest after removing the vertex subset from the graph.In thispaper, we study the minimum-weight feedback vertex set problem in outerplanar graphs and present a linear time algorithm to solve it.
基金supported by the National Natural Science Foundation of China(Nos.51490663,51475418,and U1608256)the National Basic Research Program(973)of China(No.2015CB058100)
文摘Assembly variation analysis of parts that have flexible curved surfaces is much more difficult than that of solid bodies, because of structural deformations in the assembly process. Most of the current variation analysis methods either neglect the relationships among feature points on part surfaces or regard the distribution of all feature points as the same. In this study, the problem of flexible curved surface assembly is simplified to the matching of side lines. A methodology based on Bézier curves is proposed to represent the side lines of surfaces. It solves the variation analysis problem of flexible curved surface assembly when considering surface continuity through the relations between control points and data points. The deviations of feature points on side lines are obtained through control point distribution and are then regarded as inputs in commercial finite element analysis software to calculate the final product deformations. Finally, the proposed method is illustrated in two cases of antenna surface assembly.
基金Project supported by the National Natural Science Foundation of China (Nos. 61100105, 61572020, and 61472332), the Natural Science Foundation of Fujian Province of China (No. 2015J01273), and the Fundamental Research Funds for the Central Universities, China (Nos. 20720150002 and 20720140520)
文摘In this paper, we present a novel geometric method for efficiently and robustly computing intersections between a ray and a triangular Bezier patch defined over a triangular domain, called the hybrid clipping (HC) algorithm. If the ray pierces the patch only once, we locate the parametric value of the intersection to a smaller triangular domain, which is determined by pairs of lines and quadratic curves, by using a multi-degree reduction method. The triangular domain is iteratively clipped into a smaller one by combining a subdivision method, until the domain size reaches a prespecified threshold. When the ray intersects the patch more than once, Descartes' rule of signs and a split step are required to isolate the intersection points. The algorithm can be proven to clip the triangular domain with a cubic convergence rate after an appropriate preprocessing procedure. The proposed algorithm has many attractive properties, such as the absence of an initial guess and insensitivity to small changes in coefficients of the original problem. Experiments have been conducted to illustrate the efficacy of our method in solving ray-triangular Bezier patch intersection problems.