期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用样本生成方法进行机载多光谱LiDAR数据深度学习分类
被引量:
6
1
作者
赵沛冉
管海燕
+2 位作者
李迪龙
景庄伟
于永涛
《测绘通报》
CSCD
北大核心
2021年第12期16-21,共6页
机载多光谱LiDAR系统能够快速、准确地获取地物的空间几何和光谱信息,为地物覆盖分类和目标识别提供新的数据源。近年来,基于三维点云的深度学习算法取得了一系列突破性进展,然而直接将不规则的原始点云数据输入深度学习模型进行基于点...
机载多光谱LiDAR系统能够快速、准确地获取地物的空间几何和光谱信息,为地物覆盖分类和目标识别提供新的数据源。近年来,基于三维点云的深度学习算法取得了一系列突破性进展,然而直接将不规则的原始点云数据输入深度学习模型进行基于点的分类存在一定的困难。本文提出了一种基于FPS-KNN的样本生成方法,用于基于深度学习的机载多光谱LiDAR数据分类。该方法首先对输入数据进行归一化处理;然后利用最远点采样方法(FPS)和K近邻法(KNN)在输入数据中生成一系列规则大小的训练样本数据集。通过机载多光谱LiDAR数据的试验表明,该方法所生成的样本不仅符合卷积神经网络所要求的输入数据形式,而且能够确保对输入场景的完整覆盖。
展开更多
关键词
多光谱LiDAR
点云样本
深度学习
地物分类
样本
尺度
下载PDF
职称材料
题名
利用样本生成方法进行机载多光谱LiDAR数据深度学习分类
被引量:
6
1
作者
赵沛冉
管海燕
李迪龙
景庄伟
于永涛
机构
南京信息工程大学遥感与测绘工程学院
武汉大学测绘遥感信息工程国家重点实验室
上海航天电子技术研究所
淮阴工学院计算机与软件工程学院
出处
《测绘通报》
CSCD
北大核心
2021年第12期16-21,共6页
基金
国家自然科学基金(41971414,62076107)
福建省自然科学基金(2021J05059)。
文摘
机载多光谱LiDAR系统能够快速、准确地获取地物的空间几何和光谱信息,为地物覆盖分类和目标识别提供新的数据源。近年来,基于三维点云的深度学习算法取得了一系列突破性进展,然而直接将不规则的原始点云数据输入深度学习模型进行基于点的分类存在一定的困难。本文提出了一种基于FPS-KNN的样本生成方法,用于基于深度学习的机载多光谱LiDAR数据分类。该方法首先对输入数据进行归一化处理;然后利用最远点采样方法(FPS)和K近邻法(KNN)在输入数据中生成一系列规则大小的训练样本数据集。通过机载多光谱LiDAR数据的试验表明,该方法所生成的样本不仅符合卷积神经网络所要求的输入数据形式,而且能够确保对输入场景的完整覆盖。
关键词
多光谱LiDAR
点云样本
深度学习
地物分类
样本
尺度
Keywords
multispectral LiDAR
point cloud samples
deep learning
object classification
sample size
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用样本生成方法进行机载多光谱LiDAR数据深度学习分类
赵沛冉
管海燕
李迪龙
景庄伟
于永涛
《测绘通报》
CSCD
北大核心
2021
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部