针对传统多尺度模型对模型点云比较方法(Multiscale Model to Model Cloud Comparison,M3C2)计算法向量与形变量时易受离群点影响的缺点,提出一种基于离群点探测准则的改进算法。首先,在估计关键点法向量时,依据改进离群点探测准则迭代...针对传统多尺度模型对模型点云比较方法(Multiscale Model to Model Cloud Comparison,M3C2)计算法向量与形变量时易受离群点影响的缺点,提出一种基于离群点探测准则的改进算法。首先,在估计关键点法向量时,依据改进离群点探测准则迭代剔除离群点,提高法向量估计的准确性,然后,通过离群点探测剔除圆柱内离群点,最后,结合正态分布加权计算形变量。实验结果表明,相较于M3C2原始算法,改进算法将法向量均方差精度指标提升50%以上,在形变量较大区域可将形变量估值均方差精度指标提高200%以上。改进算法具有更好的适用性和可靠性。展开更多
文摘针对传统多尺度模型对模型点云比较方法(Multiscale Model to Model Cloud Comparison,M3C2)计算法向量与形变量时易受离群点影响的缺点,提出一种基于离群点探测准则的改进算法。首先,在估计关键点法向量时,依据改进离群点探测准则迭代剔除离群点,提高法向量估计的准确性,然后,通过离群点探测剔除圆柱内离群点,最后,结合正态分布加权计算形变量。实验结果表明,相较于M3C2原始算法,改进算法将法向量均方差精度指标提升50%以上,在形变量较大区域可将形变量估值均方差精度指标提高200%以上。改进算法具有更好的适用性和可靠性。