In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly...The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly desirable, although it still remains challenging. Herein, we report a facile and reliable route to convert ZIF-8 modified by Fe-phenanthroline into Fe-incorporated and N-doped carbon dodecahedron nanoarchitecture(Fe-NCDNA), in which carbon nanosheets are formed in situ as the building blocks with uniform Fe-N-C species decoration. Systematic electrochemical studies demonstrate that the as-synthesized Fe-NCDNA electrocatalyst possesses highly attractive catalytic features toward the ORR in terms of activity and durability in both alkaline and neutral media. The Zn-air battery with the optimal Fe-NCDNA catalyst as the cathode performs impressively, delivering a power density of 184 m W cm^–2 and a specific capacity of 801 m Ah g^–1;thus, it exhibits great competitive advantages over those of the Zn-air devices employing a Pt-based cathode electrocatalyst.展开更多
Porous medium has an obvious effect on the formation of carbon dioxide hydrate. In order to study the characteristics of CO2 hydrate formation in porous medium below the freezing point, the experiment of CO2 hydrate f...Porous medium has an obvious effect on the formation of carbon dioxide hydrate. In order to study the characteristics of CO2 hydrate formation in porous medium below the freezing point, the experiment of CO2 hydrate formation was conducted in a high-pressure 1.8-L cell in the presence of porous media with a particle size of 380 μm, 500 μm and 700 μm, respectively. The test results showed that the porous medium had an important influence on the process of CO2 hydrate formation below the freezing point. Compared with porous media with a particle size of 500 μm and 700 μm, respectively, the average hydrate formation rate and gas storage capacity of carbon dioxide hydrate in the porous medium with a particle size of 380 μm attained 0.016 14 mol/h and 65.094 L/L, respectively. The results also indicated that, within a certain range of particle sizes, the smaller the particle size of porous medium was, the larger the average hydrate formation rate and the gas storage capacity of CO2 hydrate during the process of hydrate formation would be.展开更多
Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoseopie ring by the Anderson Hamiltonian. We analyze the transmission pr...Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoseopie ring by the Anderson Hamiltonian. We analyze the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon the spin-polarized strength p, the magnetic flux Ф and the number of lattice sites NR in the mesoseopic ring. These effects might have some potential applications in spintronics.展开更多
Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly...Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350-600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.展开更多
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
文摘The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly desirable, although it still remains challenging. Herein, we report a facile and reliable route to convert ZIF-8 modified by Fe-phenanthroline into Fe-incorporated and N-doped carbon dodecahedron nanoarchitecture(Fe-NCDNA), in which carbon nanosheets are formed in situ as the building blocks with uniform Fe-N-C species decoration. Systematic electrochemical studies demonstrate that the as-synthesized Fe-NCDNA electrocatalyst possesses highly attractive catalytic features toward the ORR in terms of activity and durability in both alkaline and neutral media. The Zn-air battery with the optimal Fe-NCDNA catalyst as the cathode performs impressively, delivering a power density of 184 m W cm^–2 and a specific capacity of 801 m Ah g^–1;thus, it exhibits great competitive advantages over those of the Zn-air devices employing a Pt-based cathode electrocatalyst.
基金financially supported by the Natural Science Foundation of China (No. 51266005)the Science and Technology Research Key Project of the Ministry of Education (No. 1106ZBB007)+1 种基金the Hongliu Outstanding Talent Program of LUT (No. Q201101)the Open Fund of Natural Gas Hydrate Key Laboratory, Chinese Academy of Sciences (No. y007s3)
文摘Porous medium has an obvious effect on the formation of carbon dioxide hydrate. In order to study the characteristics of CO2 hydrate formation in porous medium below the freezing point, the experiment of CO2 hydrate formation was conducted in a high-pressure 1.8-L cell in the presence of porous media with a particle size of 380 μm, 500 μm and 700 μm, respectively. The test results showed that the porous medium had an important influence on the process of CO2 hydrate formation below the freezing point. Compared with porous media with a particle size of 500 μm and 700 μm, respectively, the average hydrate formation rate and gas storage capacity of carbon dioxide hydrate in the porous medium with a particle size of 380 μm attained 0.016 14 mol/h and 65.094 L/L, respectively. The results also indicated that, within a certain range of particle sizes, the smaller the particle size of porous medium was, the larger the average hydrate formation rate and the gas storage capacity of CO2 hydrate during the process of hydrate formation would be.
基金Supported by the Scientific Research Funds of Education Department of Sichuan Province under Grant No. 2006A069the Major Basic Research Project of Sichuan Province under Grant No. 2006J13-155
文摘Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoseopie ring by the Anderson Hamiltonian. We analyze the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon the spin-polarized strength p, the magnetic flux Ф and the number of lattice sites NR in the mesoseopic ring. These effects might have some potential applications in spintronics.
基金LLP would like to thank the Chinese Scholarship Council (CSC) for financial aid. YL gratefully acknowledges the support of a US National Science Foundation CAREER award (No. DMRJ0847786). YDL would like to thank the National Natural Science Foundation of China (No. 90606006) for financial support. JZZ is grateful to the Basic Energy Sciences Division of the US Department of Energy (DOE) (No. 05ER4623A00) for financial support.
文摘Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350-600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.