期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
关于点击率大数据的高阶深度分解机预测仿真
1
作者 张换梅 董云云 《计算机仿真》 北大核心 2021年第3期456-460,共5页
互联网大数据具有典型的高维、高阶,以及非线性特征,现有点击率数据预测方法往往难以有效处理数据特征的复杂耦合、以及稀疏与类别的不均衡问题,为解决上述问题,提出了一种高阶深度分解机预测方法。在高阶分解机设计中,考虑到点击率的... 互联网大数据具有典型的高维、高阶,以及非线性特征,现有点击率数据预测方法往往难以有效处理数据特征的复杂耦合、以及稀疏与类别的不均衡问题,为解决上述问题,提出了一种高阶深度分解机预测方法。在高阶分解机设计中,考虑到点击率的二分类特性,采用函数把输入数据映射至输出结果的二值类上,并利用损失函数求偏导对模型变量进行梯度更新。为了优化模型的复杂度及其多阶性能,对映射二次项采取转换,并推广至三阶映射模型。最后,设计了单层与多层构成的深度网络,根据的对称性与偏置训练样本集,利用弥补的无监督学习。并在梯度计算时引入对比散度用以优化网络训练速度,在神经网络层采用机制用以避免网络发生过拟合。仿真结果表明,高阶深度分解机预测方法具有良好的和指标性能,能够有效提高高阶点击率大数据的预测准确度与预测速度。 展开更多
关键词 点击率大数据 高阶分解机模型 梯度计算 损失函数 深度网络学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部