针对传统点云滤波算法参数多、端到端的深度学习点云滤波算法计算成本高等问题,设计了一种基于多尺度语义分割网络的点云滤波算法(multi-scale semantic segmenta⁃tion network for point cloud filtering,MSSF)。首先,对点云进行栅格...针对传统点云滤波算法参数多、端到端的深度学习点云滤波算法计算成本高等问题,设计了一种基于多尺度语义分割网络的点云滤波算法(multi-scale semantic segmenta⁃tion network for point cloud filtering,MSSF)。首先,对点云进行栅格化并提取高程、强度等特征,得到多通道特征图;然后,基于多尺度跨层连接模块构建语义分割网络,以特征图为输入提取地面像素,映射到三维点云获取初始高程基准点,经过插值拟合得到地面高程基准面;最后,设置点到该基准面的距离阈值,实现点云滤波。实验结果表明:该算法减少了参数设置,获得了更高的精度,能实现城市区域的Li⁃DAR点云稳健滤波。展开更多
文摘针对传统点云滤波算法参数多、端到端的深度学习点云滤波算法计算成本高等问题,设计了一种基于多尺度语义分割网络的点云滤波算法(multi-scale semantic segmenta⁃tion network for point cloud filtering,MSSF)。首先,对点云进行栅格化并提取高程、强度等特征,得到多通道特征图;然后,基于多尺度跨层连接模块构建语义分割网络,以特征图为输入提取地面像素,映射到三维点云获取初始高程基准点,经过插值拟合得到地面高程基准面;最后,设置点到该基准面的距离阈值,实现点云滤波。实验结果表明:该算法减少了参数设置,获得了更高的精度,能实现城市区域的Li⁃DAR点云稳健滤波。