A cross point assignment algorithm is proposed under consideration of very long nets (LCPA).It is to consider not only the cost of connection between cross points and pins and the exclusive cost among cross points on ...A cross point assignment algorithm is proposed under consideration of very long nets (LCPA).It is to consider not only the cost of connection between cross points and pins and the exclusive cost among cross points on the boundary of a global routing cell,but also the cost of displacement among cross points of the same net.The experiment results show that the quality and speed in the following detailed routing are improved obviously,especially for very long nets.展开更多
A checkpointing scheme for relevant distributed real-time tasks which can be scheduled as a DAG is proposed. A typical algorithm, OSA, is selected for DAG scheduling. A new methods based a new structure, Scheduled Clu...A checkpointing scheme for relevant distributed real-time tasks which can be scheduled as a DAG is proposed. A typical algorithm, OSA, is selected for DAG scheduling. A new methods based a new structure, Scheduled Cluster Tree, is presented to calculate the slack time of each task in the task cluster. In the checkpointing scheme, the optimal checkpoint intervals which minimize the approximated failure probability are derived formally and validated experimentally. The complexity of approximated failure probability is quite small compared with that of the exact probability. Meanwhile, the consistency of the checkpointing is discussed also.展开更多
Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused mor...Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused more and more research interests. In this paper a new method based on multiple view geometry is presented for spatial side information generation of uncalibrated video sensor network. Trifocal tensor encapsulates all the geometric relations among three views that are independent of scene structure; it can be computed from image correspondences alone without requiring knowledge of the motion or calibration. Simulation results show that trifocal tensor-based spatial side information improves the rate-distortion performance over motion compensation based interpolation side information by a maximum gap of around 2dB. Then fusion merges the different side information (temporal and spatial) in order to improve the quality of the final one. Simulation results show that the rate-distortion gains about 0.4 dB.展开更多
Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which ...Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points.展开更多
文摘A cross point assignment algorithm is proposed under consideration of very long nets (LCPA).It is to consider not only the cost of connection between cross points and pins and the exclusive cost among cross points on the boundary of a global routing cell,but also the cost of displacement among cross points of the same net.The experiment results show that the quality and speed in the following detailed routing are improved obviously,especially for very long nets.
文摘A checkpointing scheme for relevant distributed real-time tasks which can be scheduled as a DAG is proposed. A typical algorithm, OSA, is selected for DAG scheduling. A new methods based a new structure, Scheduled Cluster Tree, is presented to calculate the slack time of each task in the task cluster. In the checkpointing scheme, the optimal checkpoint intervals which minimize the approximated failure probability are derived formally and validated experimentally. The complexity of approximated failure probability is quite small compared with that of the exact probability. Meanwhile, the consistency of the checkpointing is discussed also.
文摘Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused more and more research interests. In this paper a new method based on multiple view geometry is presented for spatial side information generation of uncalibrated video sensor network. Trifocal tensor encapsulates all the geometric relations among three views that are independent of scene structure; it can be computed from image correspondences alone without requiring knowledge of the motion or calibration. Simulation results show that trifocal tensor-based spatial side information improves the rate-distortion performance over motion compensation based interpolation side information by a maximum gap of around 2dB. Then fusion merges the different side information (temporal and spatial) in order to improve the quality of the final one. Simulation results show that the rate-distortion gains about 0.4 dB.
文摘Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points.