An experiment on critical flow of water was conducted in two nozzles of 1.41 mm in diameter and 4.35 mm in length with rounded-edge and sharp-edge respectively, covering the ranges of inlet pressure of 22.1-29.1 MPa a...An experiment on critical flow of water was conducted in two nozzles of 1.41 mm in diameter and 4.35 mm in length with rounded-edge and sharp-edge respectively, covering the ranges of inlet pressure of 22.1-29.1 MPa and inlet temperature of 38-474 ℃. More than 200 data points were obtained and the characteristics and parametric trends were investigated. In the region of near and beyond pseudo-critical temperature the thermal-equilibrium is dominant, and the flow rate can be estimated by the modified homogeneous equilibrium model. In the below pseudo-critical region the results exhibit scattered feature as a result of hysteresis effect in the onset of vaporization, characterizing a bifurcation behavior. This effect is more significant in the nozzle with sharp-edge, especially at higher pressure. For temperature well below the pseudo-critical point, the flow is not at critical condition and the flow rate can be represented by the Bernoulli equation reasonably.展开更多
The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow ann...The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.展开更多
As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with gas rec...As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with gas recirculation was used in this simulation work to evaluate the effect of fuel type and pressure on threshold gas recirculation ratio of MILD mode. Ignition delay time is also an important design parameter for gas turbine combustor, this parameter is kinetically studied to analyze the effect of pressure on MILD mixture ignition. Threshold gas recirculation ratio of hydrogen MILD combustion changes slightly and is nearly equal to that of 10 MJ/Nm3syngas in the pressure range of 1-19 atm, under the conditions of 298 K fresh reactant temperature and 1373 K exhaust gas temperature, indicating that MILD regime is fuel flexible. Ignition delay calculation results show that pressure has a negative effect on ignition delay time of 10 MJ/Nm3syngas MILD mixture, because OH mole fraction in MILD mixture drops down as pressure increases, resulting in the delay of the oxidation process.展开更多
文摘An experiment on critical flow of water was conducted in two nozzles of 1.41 mm in diameter and 4.35 mm in length with rounded-edge and sharp-edge respectively, covering the ranges of inlet pressure of 22.1-29.1 MPa and inlet temperature of 38-474 ℃. More than 200 data points were obtained and the characteristics and parametric trends were investigated. In the region of near and beyond pseudo-critical temperature the thermal-equilibrium is dominant, and the flow rate can be estimated by the modified homogeneous equilibrium model. In the below pseudo-critical region the results exhibit scattered feature as a result of hysteresis effect in the onset of vaporization, characterizing a bifurcation behavior. This effect is more significant in the nozzle with sharp-edge, especially at higher pressure. For temperature well below the pseudo-critical point, the flow is not at critical condition and the flow rate can be represented by the Bernoulli equation reasonably.
基金This work is supported by the Project of National Natural Science Foundation of China (No. 50076014) and the Project of Major State Basic Research Program (No. G2000026303).
文摘The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.
基金supported by National Natural Science Foundation of China(Project No.51006104)National Key Basic Re-search Program of China(No.2014CB247500)
文摘As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with gas recirculation was used in this simulation work to evaluate the effect of fuel type and pressure on threshold gas recirculation ratio of MILD mode. Ignition delay time is also an important design parameter for gas turbine combustor, this parameter is kinetically studied to analyze the effect of pressure on MILD mixture ignition. Threshold gas recirculation ratio of hydrogen MILD combustion changes slightly and is nearly equal to that of 10 MJ/Nm3syngas in the pressure range of 1-19 atm, under the conditions of 298 K fresh reactant temperature and 1373 K exhaust gas temperature, indicating that MILD regime is fuel flexible. Ignition delay calculation results show that pressure has a negative effect on ignition delay time of 10 MJ/Nm3syngas MILD mixture, because OH mole fraction in MILD mixture drops down as pressure increases, resulting in the delay of the oxidation process.