A reliability measure of network capacity under node capacities is introduced, using the concept of network reserve capacity, and compared with that based on link capacities. The node capacities should be considered i...A reliability measure of network capacity under node capacities is introduced, using the concept of network reserve capacity, and compared with that based on link capacities. The node capacities should be considered in to the reliability analysis of urban street networks. Providing that every origin-destination (OD) pair have a uniform growth or decline in its OD demand, whereas relaxing this limitation can yield pictures regarding the spatial distribution of the demand pattern with non-uniform change, which can be especially useful in individual zone land-use development plans.展开更多
In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system ...In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system because the rate of occurrence of failures (ROCOF) of the system changes over time rather than remains stable. However, from a practical point of view, it is always preferred to apply the simplest method to address problems and to obtain useful practical results. Therefore, we attempted to use the HPP model to analyze the failure data from real repairable systems. A graphic method and the Laplace test were also used in the analysis. Results of numerical applications show that the HPP model may be a useful tool for the entire life cycle of repairable systems.展开更多
To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upse...To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upset-resilient cells,which are identically mainly constructed from three mutually feeding back 2-input C-elements,the latch achieves double-node-upset-resilience.Using smaller transistor sizes,clock-gating technology,and high-speed transmission-path,the cost of the latch is effectively reduced.Simulation results demonstrate the double-node-upset-resilience of the latch and also show that compared with the up-to-date double-node-upset-resilient latches,the proposed latch reduces the transmission delay by 72.54%,the power dissipation by 33.97%,and the delay-power-area product by 78.57%,while the average cost of the silicon area is only increased by 16.45%.展开更多
The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--...The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.展开更多
Cloud computing is becoming an important solution for providing scalable computing resources via Internet. Because there are tens of thousands of nodes in data center, the probability of server failures is nontrivial....Cloud computing is becoming an important solution for providing scalable computing resources via Internet. Because there are tens of thousands of nodes in data center, the probability of server failures is nontrivial. Therefore, it is a critical challenge to guarantee the service reliability. Fault-tolerance strategies, such as checkpoint, are commonly employed. Because of the failure of the edge switches, the checkpoint image may become inaccessible. Therefore, current checkpoint-based fault tolerance method cannot achieve the best effect. In this paper, we propose an optimal checkpoint method with edge switch failure-aware. The edge switch failure-aware checkpoint method includes two algorithms. The first algorithm employs the data center topology and communication characteristic for checkpoint image storage server selection. The second algorithm employs the checkpoint image storage characteristic as well as the data center topology to select the recovery server. Simulation experiments are performed to demonstrate the effectiveness of the proposed method.展开更多
A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, t...A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, the most important problem is to find a performance function. We have created a new method of building a limit state equation for planar slip surfaces by applying the mathematical cusp catastrophe theory. This new technique overcomes the defects in the traditional rigid limit equilibrium theory and offers a new way for studying the reliability problem of planar slip surfaces. Consequently, we applied the technique to a case of an open-pit mine and compared our results with that of the traditional approach. From the results we conclude that both methods are essentially consistent, but the reliability index calculated by the traditional model is lower than that from the catastrophic model. The catastrophe model takes into consideration two possible situations of a slope being in the limit equilibrium condition, i.e., it may or may not slip. In the traditional method, however, a slope is definitely considered as slipping when it meets the condition of a limit equilibrium. We conclude that the catastrophe model has more actual and instructive importance compared to the traditional model.展开更多
To estimate a compressive strength from existing concrete structures by core drilling are usually gathered with a diameter specimen of 100 mm or three times of maximum coarse aggregate size and examined by uniaxial co...To estimate a compressive strength from existing concrete structures by core drilling are usually gathered with a diameter specimen of 100 mm or three times of maximum coarse aggregate size and examined by uniaxial compressive strength (UCS). It is relatively difficult to gather a large sized core, and a pit place will be limited by main members. To get an alternative solution with smaller specimen, point load test (PLT) has been sele,:ted which is a simple test and widely accepted in rock materials research, but relatively new in concrete. The reliability of PLT is evaluated by extracting a lot of core drilled specimen from ready mixed concrete blocks with maximum coarse aggregate size, G of 20 mm in representative of architectural structures and 40 mm in representative of civil structures on the range of concrete grade from 16 to 50. Compressive strengths were classified into general categories, conversion factors were determined, and scattering characteristics were also investigated. The relationship between point load index (Is) and compressive strength of concrete core specimen (fcc) can be written as linear approximation as fcc = k.Is- C.展开更多
文摘A reliability measure of network capacity under node capacities is introduced, using the concept of network reserve capacity, and compared with that based on link capacities. The node capacities should be considered in to the reliability analysis of urban street networks. Providing that every origin-destination (OD) pair have a uniform growth or decline in its OD demand, whereas relaxing this limitation can yield pictures regarding the spatial distribution of the demand pattern with non-uniform change, which can be especially useful in individual zone land-use development plans.
文摘In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system because the rate of occurrence of failures (ROCOF) of the system changes over time rather than remains stable. However, from a practical point of view, it is always preferred to apply the simplest method to address problems and to obtain useful practical results. Therefore, we attempted to use the HPP model to analyze the failure data from real repairable systems. A graphic method and the Laplace test were also used in the analysis. Results of numerical applications show that the HPP model may be a useful tool for the entire life cycle of repairable systems.
基金The National Natural Science Foundation of China(No.61604001)the Doctor Startup Fund of Anhui University(No.J01003217)
文摘To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upset-resilient cells,which are identically mainly constructed from three mutually feeding back 2-input C-elements,the latch achieves double-node-upset-resilience.Using smaller transistor sizes,clock-gating technology,and high-speed transmission-path,the cost of the latch is effectively reduced.Simulation results demonstrate the double-node-upset-resilience of the latch and also show that compared with the up-to-date double-node-upset-resilient latches,the proposed latch reduces the transmission delay by 72.54%,the power dissipation by 33.97%,and the delay-power-area product by 78.57%,while the average cost of the silicon area is only increased by 16.45%.
基金Project(50376076) supported by the National Natural Science Foundation of China
文摘The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.
基金supported by Beijing Natural Science Foundation (4174100)NSFC(61602054)the Fundamental Research Funds for the Central Universities
文摘Cloud computing is becoming an important solution for providing scalable computing resources via Internet. Because there are tens of thousands of nodes in data center, the probability of server failures is nontrivial. Therefore, it is a critical challenge to guarantee the service reliability. Fault-tolerance strategies, such as checkpoint, are commonly employed. Because of the failure of the edge switches, the checkpoint image may become inaccessible. Therefore, current checkpoint-based fault tolerance method cannot achieve the best effect. In this paper, we propose an optimal checkpoint method with edge switch failure-aware. The edge switch failure-aware checkpoint method includes two algorithms. The first algorithm employs the data center topology and communication characteristic for checkpoint image storage server selection. The second algorithm employs the checkpoint image storage characteristic as well as the data center topology to select the recovery server. Simulation experiments are performed to demonstrate the effectiveness of the proposed method.
基金financial support from Changjiang Scholars and Innovative Research Team in University, and research project of ‘SUST Spring Bud’
文摘A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, the most important problem is to find a performance function. We have created a new method of building a limit state equation for planar slip surfaces by applying the mathematical cusp catastrophe theory. This new technique overcomes the defects in the traditional rigid limit equilibrium theory and offers a new way for studying the reliability problem of planar slip surfaces. Consequently, we applied the technique to a case of an open-pit mine and compared our results with that of the traditional approach. From the results we conclude that both methods are essentially consistent, but the reliability index calculated by the traditional model is lower than that from the catastrophic model. The catastrophe model takes into consideration two possible situations of a slope being in the limit equilibrium condition, i.e., it may or may not slip. In the traditional method, however, a slope is definitely considered as slipping when it meets the condition of a limit equilibrium. We conclude that the catastrophe model has more actual and instructive importance compared to the traditional model.
文摘To estimate a compressive strength from existing concrete structures by core drilling are usually gathered with a diameter specimen of 100 mm or three times of maximum coarse aggregate size and examined by uniaxial compressive strength (UCS). It is relatively difficult to gather a large sized core, and a pit place will be limited by main members. To get an alternative solution with smaller specimen, point load test (PLT) has been sele,:ted which is a simple test and widely accepted in rock materials research, but relatively new in concrete. The reliability of PLT is evaluated by extracting a lot of core drilled specimen from ready mixed concrete blocks with maximum coarse aggregate size, G of 20 mm in representative of architectural structures and 40 mm in representative of civil structures on the range of concrete grade from 16 to 50. Compressive strengths were classified into general categories, conversion factors were determined, and scattering characteristics were also investigated. The relationship between point load index (Is) and compressive strength of concrete core specimen (fcc) can be written as linear approximation as fcc = k.Is- C.