现行RCM试验普遍采用点均法确定混凝土的氯离子扩散系数,存在结果离散性大且不稳定等问题。为此,提出混凝土RCM试验分析的面均法(area average method)。首先,通过试验设计制备74组具有不同氯离子扩散系数的混凝土试件,并据此开展变电压...现行RCM试验普遍采用点均法确定混凝土的氯离子扩散系数,存在结果离散性大且不稳定等问题。为此,提出混凝土RCM试验分析的面均法(area average method)。首先,通过试验设计制备74组具有不同氯离子扩散系数的混凝土试件,并据此开展变电压RCM试验;其次利用图像获取装置和Adobe Photoshop软件测量混凝土试件轴向断面上的氯离子扩散面积,据此计算氯离子扩散深度及扩散系数。最后,通过对比分析验证文中面均法的合理性,并建立点均法与面均法结果之间的转换关系式。结果表明:点均法测量结果离散性大,且随测点间距的减小而变小;只有当测点间距小于2mm时点均法结果才能收敛,且与面均法结果相吻合。而面均法可以有效克服点均法的缺陷,操作方便快捷,结果离散性小。国内外现行规范普遍采用10mm间距的测点布置方案测试混凝土的氯离子扩散系数,导致RCM试验结果偏大。展开更多
The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisa...The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisation methods. In a classic paper)Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of theabove problem.The author also use the solutioll (A, p(8)) to construct a weak travelling wave front solutionu(x, t) = y((), (= x -- Ct, C = AN/(N + 1), of the generalized diffusion equation with reactionO { 1 O.IN ̄1 OUI onde L k(u) i ox: &)  ̄ & = g(u),where N > 0, k(8) > 0 a.e. on [0, 1], and f(s):= ac i: g(t)kl/N(t)dt is absolutely continuouson [0, 11, while y(() is increasing and absolutely continuous on (--co, +co) and(k(y(())ly,(OI'), = g(y(()) -- Cy'(f) a.e. on (--co, +co),y( ̄oo)  ̄ 0, y(+oo)  ̄ 1.展开更多
文摘现行RCM试验普遍采用点均法确定混凝土的氯离子扩散系数,存在结果离散性大且不稳定等问题。为此,提出混凝土RCM试验分析的面均法(area average method)。首先,通过试验设计制备74组具有不同氯离子扩散系数的混凝土试件,并据此开展变电压RCM试验;其次利用图像获取装置和Adobe Photoshop软件测量混凝土试件轴向断面上的氯离子扩散面积,据此计算氯离子扩散深度及扩散系数。最后,通过对比分析验证文中面均法的合理性,并建立点均法与面均法结果之间的转换关系式。结果表明:点均法测量结果离散性大,且随测点间距的减小而变小;只有当测点间距小于2mm时点均法结果才能收敛,且与面均法结果相吻合。而面均法可以有效克服点均法的缺陷,操作方便快捷,结果离散性小。国内外现行规范普遍采用10mm间距的测点布置方案测试混凝土的氯离子扩散系数,导致RCM试验结果偏大。
文摘The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisation methods. In a classic paper)Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of theabove problem.The author also use the solutioll (A, p(8)) to construct a weak travelling wave front solutionu(x, t) = y((), (= x -- Ct, C = AN/(N + 1), of the generalized diffusion equation with reactionO { 1 O.IN ̄1 OUI onde L k(u) i ox: &)  ̄ & = g(u),where N > 0, k(8) > 0 a.e. on [0, 1], and f(s):= ac i: g(t)kl/N(t)dt is absolutely continuouson [0, 11, while y(() is increasing and absolutely continuous on (--co, +co) and(k(y(())ly,(OI'), = g(y(()) -- Cy'(f) a.e. on (--co, +co),y( ̄oo)  ̄ 0, y(+oo)  ̄ 1.