经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应...经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应问题进行处理。算例分析结果表明该方法的算法简单,计算速度快,能有效地抑制EMD分解时的边缘效应,分解得到的固有模式函数完备地体现了原信号真实的频率和幅值信息。在信号重构时不会带来原始信号的畸变。展开更多
文摘经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应问题进行处理。算例分析结果表明该方法的算法简单,计算速度快,能有效地抑制EMD分解时的边缘效应,分解得到的固有模式函数完备地体现了原信号真实的频率和幅值信息。在信号重构时不会带来原始信号的畸变。