设f(x)在[0,∞)的每一有限子区间上为有界变差函数,作用在f(x)上的Szasz—Mirakyan算子和Baskakov算子分别为:S,(f,x)=sum from k=0 to ∞ (f(k/n)e^(nx)((nx)~k)/kl),V_n(f,x)=sum from k=0 to ∞ (f(k/n)((n+k-1)/k))x^k/(1+x)^(n+k))...设f(x)在[0,∞)的每一有限子区间上为有界变差函数,作用在f(x)上的Szasz—Mirakyan算子和Baskakov算子分别为:S,(f,x)=sum from k=0 to ∞ (f(k/n)e^(nx)((nx)~k)/kl),V_n(f,x)=sum from k=0 to ∞ (f(k/n)((n+k-1)/k))x^k/(1+x)^(n+k)) Fuhua Cheng借助Bojanic的方法得出了S_n(f,x)对f(x)的点态逼近度。本文在学习与参考[2]的基础上,更多地应用概率方法,来研究V_n(f,x)对f(x)的点态逼近度。在处理尾部时,我们得到了一个一般性的结果(文中的引理5),它不仅可以用来证明本文的定理1,而且也适用于其他算子,从而简化了[2]中的计算。展开更多
文摘设f(x)在[0,∞)的每一有限子区间上为有界变差函数,作用在f(x)上的Szasz—Mirakyan算子和Baskakov算子分别为:S,(f,x)=sum from k=0 to ∞ (f(k/n)e^(nx)((nx)~k)/kl),V_n(f,x)=sum from k=0 to ∞ (f(k/n)((n+k-1)/k))x^k/(1+x)^(n+k)) Fuhua Cheng借助Bojanic的方法得出了S_n(f,x)对f(x)的点态逼近度。本文在学习与参考[2]的基础上,更多地应用概率方法,来研究V_n(f,x)对f(x)的点态逼近度。在处理尾部时,我们得到了一个一般性的结果(文中的引理5),它不仅可以用来证明本文的定理1,而且也适用于其他算子,从而简化了[2]中的计算。