Seismic migration moves reflections to their true subsurface positions and yields seismic images of subsurface areas. However, due to limited acquisition aperture, complex overburden structure and target dipping angle...Seismic migration moves reflections to their true subsurface positions and yields seismic images of subsurface areas. However, due to limited acquisition aperture, complex overburden structure and target dipping angle, the migration often generates a distorted image of the actual subsurface structure. Seismic illumination and resolution analyses provide a quantitative description of how the above-mentioned factors distort the image. The point spread function (PSF) gives the resolution of the depth image and carries full information about the factors affecting the quality of the image. The staining algorithm establishes a correspondence between a certain structure and its relevant wavefield and reflected data. In this paper, we use the staining algorithm to calculate the PSFs, then use these PSFs for extracting the acquisition dip response and correcting the original depth image by deconvolution. We present relevant results of the SEG salt model. The staining algorithm provides an efficient tool for calculating the PSF and for conducting broadband seismic illumination and resolution analyses.展开更多
Let G be a simple graph. Let f be a mapping from V(G) U E(G) to {1, 2,..., k}. Let Cf(v) = {f(v)} U {f(vw)|w ∈ V(G),vw ∈ E(G)} for every v ∈ V(G). If f is a k-propertotal-coloring, and if Cf(u) ...Let G be a simple graph. Let f be a mapping from V(G) U E(G) to {1, 2,..., k}. Let Cf(v) = {f(v)} U {f(vw)|w ∈ V(G),vw ∈ E(G)} for every v ∈ V(G). If f is a k-propertotal-coloring, and if Cf(u) ≠ Cf(v) for uv ∈ V(G),uv E E(G), then f is called k-adjacentvertex-distinguishing total coloring of G(k-AVDTC of G for short). Let χat(G) = min{k|G has a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex-distinguishing total chromatic number. The adjacent-vertex-distinguishing total chromatic number on the Cartesion product of path Pm and complete graph Kn is obtained.展开更多
Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distingu...Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.展开更多
基金funded by the National Natural Science Foundation of China(No.41374006 and 41274117)
文摘Seismic migration moves reflections to their true subsurface positions and yields seismic images of subsurface areas. However, due to limited acquisition aperture, complex overburden structure and target dipping angle, the migration often generates a distorted image of the actual subsurface structure. Seismic illumination and resolution analyses provide a quantitative description of how the above-mentioned factors distort the image. The point spread function (PSF) gives the resolution of the depth image and carries full information about the factors affecting the quality of the image. The staining algorithm establishes a correspondence between a certain structure and its relevant wavefield and reflected data. In this paper, we use the staining algorithm to calculate the PSFs, then use these PSFs for extracting the acquisition dip response and correcting the original depth image by deconvolution. We present relevant results of the SEG salt model. The staining algorithm provides an efficient tool for calculating the PSF and for conducting broadband seismic illumination and resolution analyses.
基金the Science and Research Project of Education Department of Gansu Province (0501-02)
文摘Let G be a simple graph. Let f be a mapping from V(G) U E(G) to {1, 2,..., k}. Let Cf(v) = {f(v)} U {f(vw)|w ∈ V(G),vw ∈ E(G)} for every v ∈ V(G). If f is a k-propertotal-coloring, and if Cf(u) ≠ Cf(v) for uv ∈ V(G),uv E E(G), then f is called k-adjacentvertex-distinguishing total coloring of G(k-AVDTC of G for short). Let χat(G) = min{k|G has a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex-distinguishing total chromatic number. The adjacent-vertex-distinguishing total chromatic number on the Cartesion product of path Pm and complete graph Kn is obtained.
基金supported by National Natural Science Foundation of China(Grant Nos.11101243 and 11371355)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100131120017)the Scientific Research Foundation for the Excellent Middle Aged and Youth Scientists of Shandong Province of China(Grant No.BS2012SF016)
文摘Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.