A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of...A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.展开更多
Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usual...Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usually first deploy a number of reference nodes which are able to communicate with each other, then select only some wireless links, whose signals are affected the most by the transceiver-free target, to estimate the target position. However, such traditional technologies adopt an ideal model for the target, the other link information and environment interference behavior are not considered comprehensively. In order to overcome this drawback, we propose a method which is able to precisely estimate the transceiver-free target position. It not only can leverage more link information, but also take environmental interference into account. Two algorithms are proposed in our system, one is Best K-Nearest Neighbor(KNN) algorithm, the other is Support Vector Regression(SVR) algorithm. Our experiments are based on Telos B sensor nodes and performed in different complex lab areas which have many different furniture and equipment. The experiment results show that the average localization error is round 1.1m. Compared with traditional methods, the localization accuracy is increased nearly two times.展开更多
Recently we have proposed anew method combininginterior and exterior approaches to solve linear programming problems. This method uses an interior point, and from there connected to the vertex of the so called station...Recently we have proposed anew method combininginterior and exterior approaches to solve linear programming problems. This method uses an interior point, and from there connected to the vertex of the so called station cone which is also a solution of the dual problem. This allows us to determine the entering vector and the new station cone. Here in this paper, we present a new modified algorithm for the case, when at each iteration we determine a new interior point. The new building interior point moves toward the optimal vertex. Thanks to the shortened from both inside and outside, the new version allows to find quicker the optimal solution. The computational experiments show that the number of iterations of the new modified algorithm is significantly smaller than that of the second phase of the dual simplex method.展开更多
基金Supported by the National Natural Science Foundation of China (No.40471089) and the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping.
文摘A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.
基金supported by the National Natural Science Foundation of China (Grant No.61202377, U1301251)National High Technology Joint Research Program of China (Grant No.2015AA015305)+1 种基金Science and Technology Planning Project of Guangdong Province (Grant No.2013B090500055)Guangdong Natural Science Foundation (Grant No.2014A030313553)
文摘Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usually first deploy a number of reference nodes which are able to communicate with each other, then select only some wireless links, whose signals are affected the most by the transceiver-free target, to estimate the target position. However, such traditional technologies adopt an ideal model for the target, the other link information and environment interference behavior are not considered comprehensively. In order to overcome this drawback, we propose a method which is able to precisely estimate the transceiver-free target position. It not only can leverage more link information, but also take environmental interference into account. Two algorithms are proposed in our system, one is Best K-Nearest Neighbor(KNN) algorithm, the other is Support Vector Regression(SVR) algorithm. Our experiments are based on Telos B sensor nodes and performed in different complex lab areas which have many different furniture and equipment. The experiment results show that the average localization error is round 1.1m. Compared with traditional methods, the localization accuracy is increased nearly two times.
文摘Recently we have proposed anew method combininginterior and exterior approaches to solve linear programming problems. This method uses an interior point, and from there connected to the vertex of the so called station cone which is also a solution of the dual problem. This allows us to determine the entering vector and the new station cone. Here in this paper, we present a new modified algorithm for the case, when at each iteration we determine a new interior point. The new building interior point moves toward the optimal vertex. Thanks to the shortened from both inside and outside, the new version allows to find quicker the optimal solution. The computational experiments show that the number of iterations of the new modified algorithm is significantly smaller than that of the second phase of the dual simplex method.