针对视觉同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)方法在相机快速运动中容易导致图像模糊,以及在稠密场景中线特征提取易造成信息冗余等问题,提出一种融合梯度密度的点线视觉SLAM算法改进。该算法首先利用前后...针对视觉同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)方法在相机快速运动中容易导致图像模糊,以及在稠密场景中线特征提取易造成信息冗余等问题,提出一种融合梯度密度的点线视觉SLAM算法改进。该算法首先利用前后图像帧之间特征点数量信息对模糊图像进行筛选,并使用高斯模糊进行优化处理,得到匹配效果更佳的图像帧。然后利用点特征信息判断是否引入线特征,并引入图像像素梯度密度对LSD(Line Segment Detection)线特征进行多维优化,提取出稳定线特征以提高后续匹配质量。最后结合点线特征误差构建误差函数,最小化投影误差提高位姿估计精度。算法在TUM数据集下进行测试,实验结果表明本算法可以有效提升特征提取的稳健性,进而提高相机位姿估计与建图的精度。展开更多
特征匹配作为计算机视觉的一项关键技术而备受关注。近年来,基于描述子的特征点匹配技术取得了一系列突破性进展,但曲线长度不一、端点定位不准确以及周围包含的重复性纹理较多等因素,导致了曲线匹配研究依旧是一个极具挑战性的热点研...特征匹配作为计算机视觉的一项关键技术而备受关注。近年来,基于描述子的特征点匹配技术取得了一系列突破性进展,但曲线长度不一、端点定位不准确以及周围包含的重复性纹理较多等因素,导致了曲线匹配研究依旧是一个极具挑战性的热点研究课题,且现有曲线匹配方法大多出现匹配总数少、匹配正确率低的问题。为增加特征匹配的总数和正确率,利用特征点和特征曲线的位置关系提出一种点线特征融合的误匹配剔除算法(Point Line feature Fusion,PLF)。首先定义点到曲线的距离,利用点、曲线描述子提取图像的点、线特征;其次确定落入匹配曲线对应支撑区域内的匹配点对,并根据匹配点组和曲线间的距离约束剔除错误曲线匹配;最后利用点线距离约束剔除匹配曲线支撑区域内的错误点匹配。实验选取了3种不同的点线组合,即SIFT技术提取的点特征分别与IOCD曲线描述子、IOMSD曲线描述子、GOCD曲线描述子提取的曲线特征相融合,验证算法对多种点、线描述子具有适用性,且该算法不仅适用于特征点与特征曲线的融合,亦适用于特征点与特征直线的融合,从而验证了其对多种图像特征具有适用性。实验结果表明,在旋转、视角变化、光照变化、压缩、噪音、模糊等变换条件下,该算法均能有效提高曲线特征匹配的匹配总数和匹配正确率,同时提高点匹配的正确率。展开更多
针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on optimize...针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on optimized ORB point feature and line feature,OOL-VINS).首先,对双目视觉进行点线特征的提取与匹配,通过匹配的特征点构建残差模型,并结合松耦合算法实现系统快速且稳定的初始化.然后,利用点线特征以及三角化算法设计了一种更加鲁棒的方法来获取路标点的3D信息,以此来实现系统的位姿跟踪.最后,根据位姿跟踪过程中构建的局部三维地图,并结合滑动窗口的非线性优化对相机位姿进行更新,提高系统的定位精度.实验结果表明,OOL-VINS在TUM纹理结构类数据集上能获取更多有效的点线视觉特征,且特征提取耗时为27ms.在Eu Roc和TUM-VI数据集上进行初始化实验,实验表明,OOL-VINS初始化更加快速稳定.同样地,我们使用以上数据集进行系统性能的实验验证.结果表明,该系统的平均跟踪帧率为25Hz,在300m的低纹理场景中,定位精度可达0.072m.展开更多
现有基于点特征的视觉SLAM(simultaneous localization and mapping)算法在弱纹理环境中表现不佳,为此提出了一种基于点线面特征融合的视觉里程计算法,能够在弱纹理环境中实现精准定位。首先基于曼哈顿世界假设下,使用线特征与面特征提...现有基于点特征的视觉SLAM(simultaneous localization and mapping)算法在弱纹理环境中表现不佳,为此提出了一种基于点线面特征融合的视觉里程计算法,能够在弱纹理环境中实现精准定位。首先基于曼哈顿世界假设下,使用线特征与面特征提取曼哈顿世界坐标系,并将线特征与面特征与坐标系联合;其次为了提升系统定位的准确性,使用了一种无漂移旋转的位姿估计算法,将位姿的旋转与平移分开求解;最后利用结构化的线特征与面特征对位姿与曼哈顿轴进行优化,综合考虑图像中的点线面特征,使得位姿估计的结果更加精确。实验表明,该算法在TUM与ICL-NUIM数据集中的表现优于目前的其他方法。展开更多
文摘特征匹配作为计算机视觉的一项关键技术而备受关注。近年来,基于描述子的特征点匹配技术取得了一系列突破性进展,但曲线长度不一、端点定位不准确以及周围包含的重复性纹理较多等因素,导致了曲线匹配研究依旧是一个极具挑战性的热点研究课题,且现有曲线匹配方法大多出现匹配总数少、匹配正确率低的问题。为增加特征匹配的总数和正确率,利用特征点和特征曲线的位置关系提出一种点线特征融合的误匹配剔除算法(Point Line feature Fusion,PLF)。首先定义点到曲线的距离,利用点、曲线描述子提取图像的点、线特征;其次确定落入匹配曲线对应支撑区域内的匹配点对,并根据匹配点组和曲线间的距离约束剔除错误曲线匹配;最后利用点线距离约束剔除匹配曲线支撑区域内的错误点匹配。实验选取了3种不同的点线组合,即SIFT技术提取的点特征分别与IOCD曲线描述子、IOMSD曲线描述子、GOCD曲线描述子提取的曲线特征相融合,验证算法对多种点、线描述子具有适用性,且该算法不仅适用于特征点与特征曲线的融合,亦适用于特征点与特征直线的融合,从而验证了其对多种图像特征具有适用性。实验结果表明,在旋转、视角变化、光照变化、压缩、噪音、模糊等变换条件下,该算法均能有效提高曲线特征匹配的匹配总数和匹配正确率,同时提高点匹配的正确率。
文摘针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on optimized ORB point feature and line feature,OOL-VINS).首先,对双目视觉进行点线特征的提取与匹配,通过匹配的特征点构建残差模型,并结合松耦合算法实现系统快速且稳定的初始化.然后,利用点线特征以及三角化算法设计了一种更加鲁棒的方法来获取路标点的3D信息,以此来实现系统的位姿跟踪.最后,根据位姿跟踪过程中构建的局部三维地图,并结合滑动窗口的非线性优化对相机位姿进行更新,提高系统的定位精度.实验结果表明,OOL-VINS在TUM纹理结构类数据集上能获取更多有效的点线视觉特征,且特征提取耗时为27ms.在Eu Roc和TUM-VI数据集上进行初始化实验,实验表明,OOL-VINS初始化更加快速稳定.同样地,我们使用以上数据集进行系统性能的实验验证.结果表明,该系统的平均跟踪帧率为25Hz,在300m的低纹理场景中,定位精度可达0.072m.
文摘现有基于点特征的视觉SLAM(simultaneous localization and mapping)算法在弱纹理环境中表现不佳,为此提出了一种基于点线面特征融合的视觉里程计算法,能够在弱纹理环境中实现精准定位。首先基于曼哈顿世界假设下,使用线特征与面特征提取曼哈顿世界坐标系,并将线特征与面特征与坐标系联合;其次为了提升系统定位的准确性,使用了一种无漂移旋转的位姿估计算法,将位姿的旋转与平移分开求解;最后利用结构化的线特征与面特征对位姿与曼哈顿轴进行优化,综合考虑图像中的点线面特征,使得位姿估计的结果更加精确。实验表明,该算法在TUM与ICL-NUIM数据集中的表现优于目前的其他方法。