期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于点线面特征的无漂移旋转视觉里程计
1
作者 李用杰 秦广健 +1 位作者 武利明 熊军林 《计算机应用研究》 CSCD 北大核心 2023年第12期3805-3809,共5页
现有基于点特征的视觉SLAM(simultaneous localization and mapping)算法在弱纹理环境中表现不佳,为此提出了一种基于点线面特征融合的视觉里程计算法,能够在弱纹理环境中实现精准定位。首先基于曼哈顿世界假设下,使用线特征与面特征提... 现有基于点特征的视觉SLAM(simultaneous localization and mapping)算法在弱纹理环境中表现不佳,为此提出了一种基于点线面特征融合的视觉里程计算法,能够在弱纹理环境中实现精准定位。首先基于曼哈顿世界假设下,使用线特征与面特征提取曼哈顿世界坐标系,并将线特征与面特征与坐标系联合;其次为了提升系统定位的准确性,使用了一种无漂移旋转的位姿估计算法,将位姿的旋转与平移分开求解;最后利用结构化的线特征与面特征对位姿与曼哈顿轴进行优化,综合考虑图像中的点线面特征,使得位姿估计的结果更加精确。实验表明,该算法在TUM与ICL-NUIM数据集中的表现优于目前的其他方法。 展开更多
关键词 点线面特征融合 无漂移旋转 视觉里程计
下载PDF
结构化环境下基于点线面特征融合的SLAM算法
2
作者 曹一波 赵鹏飞 +2 位作者 朱海文 刘顺 张智辉 《计算机技术与发展》 2023年第7期85-90,共6页
结构化场景中,存在着低纹理表面为特征的人造环境,基于点特征的SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)算法难以得到足够的匹配点对,从而导致相机估计运动失败。除了点之外,结构化环境提供了大量的几何特征,... 结构化场景中,存在着低纹理表面为特征的人造环境,基于点特征的SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)算法难以得到足够的匹配点对,从而导致相机估计运动失败。除了点之外,结构化环境提供了大量的几何特征,例如线和平面。因此,提出一种基于点线面特征融合的SLAM算法。算法将基于深度学习的SuperPoint点特征与传统线面特征相结合,利用结构化场景的特性,将位姿解耦细化。首先,使用线面特征构建MW(Manhattan World,曼哈顿世界)坐标系,利用每一时刻相机与MW坐标系的相对旋转得到相机之间的旋转矩阵;然后,构建点线面特征的重投影误差函数,通过最小化联合误差函数得到平移矩阵;最后,根据结构化环境下平面间相互垂直和平行的特性添加约束函数,同时为弥补环境中出现不严格遵守MW假设的情况,使用关键帧构建的局部地图投影到当前帧进一步优化位姿。在TUM公开数据集上与主流方法对比表明,该算法有效提升了结构化低纹理环境下的SLAM定位精度。 展开更多
关键词 点线面特征 SuperPoint 同时定位与地图构建 结构化环境 重投影误差
下载PDF
PLP-SLAM:基于点、线、面特征融合的视觉SLAM方法 被引量:32
3
作者 李海丰 胡遵河 陈新伟 《机器人》 EI CSCD 北大核心 2017年第2期214-220,229,共8页
基于点特征的视觉SLAM(同时定位与地图构建)算法存在计算量大、环境存储空间负荷高、定位误差较大的问题,为此,提出了一种基于点、线段、平面特征融合的视觉SLAM算法——PLP-SLAM.在扩展卡尔曼滤波(EKF)框架下,首先利用点特征估计机器... 基于点特征的视觉SLAM(同时定位与地图构建)算法存在计算量大、环境存储空间负荷高、定位误差较大的问题,为此,提出了一种基于点、线段、平面特征融合的视觉SLAM算法——PLP-SLAM.在扩展卡尔曼滤波(EKF)框架下,首先利用点特征估计机器人当前位姿,然后构建了基于点、线、平面特征的观测模型,最后建立了带平面约束的线段特征数据关联方法及系统状态更新模型,并利用线段和平面特征描述环境信息.在公开数据集上进行了实验,结果表明,本文PLP-SLAM算法能够成功完成SLAM任务,平均定位误差为2.3 m,优于基于点特征的SLAM方法,并通过基于不同特征的SLAM实验表明了本文提出的点、线、面特征融合的优越性. 展开更多
关键词 同时定位与地图构建 点线面特征融合 扩展卡尔曼滤波 线段特征 特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部