In order to avoid internal attacks during data aggregation in wireless sensor networks, a grid-based network architecture fit for monitoring is designed and the algorithms for network division, initialization and grid...In order to avoid internal attacks during data aggregation in wireless sensor networks, a grid-based network architecture fit for monitoring is designed and the algorithms for network division, initialization and grid tree construction are presented. The characteristics of on-off attacks are first studied and monitoring mechanisms are then designed for sensor nodes. A Fast Detection and Slow Recovery (FDSR) algorithm is proposed to prevent on-off attacks by observing the behaviors of the nodes and computing reputations. A recovery mechanism is designed to isolate malicious nodes by identifying the new roles of nodes and updating the grid tree. In the experiments, some situations of on-off attacks are simulated and the results are compared with other approaches. The experimental results indicate that our approach can detect malicious nodes effectively and guarantee secure data aggregation with acceptable energy consumption.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60873199.
文摘In order to avoid internal attacks during data aggregation in wireless sensor networks, a grid-based network architecture fit for monitoring is designed and the algorithms for network division, initialization and grid tree construction are presented. The characteristics of on-off attacks are first studied and monitoring mechanisms are then designed for sensor nodes. A Fast Detection and Slow Recovery (FDSR) algorithm is proposed to prevent on-off attacks by observing the behaviors of the nodes and computing reputations. A recovery mechanism is designed to isolate malicious nodes by identifying the new roles of nodes and updating the grid tree. In the experiments, some situations of on-off attacks are simulated and the results are compared with other approaches. The experimental results indicate that our approach can detect malicious nodes effectively and guarantee secure data aggregation with acceptable energy consumption.