Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corrosion potential of different copolymer...Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corrosion potential of different copolymer coatings, the best solution composition was 0.09 mol/L phenol and 0.01 mol/L aniline. Through infrared spectrum analysis, polyaniline structure was proved in phenol-aniline copolymer, as well as more side chains. Scanning electron microscope was used to analyze microstructure of copolymer coating, taking advantage of part solubility of phenol-aniline eopolymer in tetrahydrofuran, the bifurcate network structure was observed. The copolymer coating microstructure was summarized, compared with the performance of polyphenol coatings, the reasons of corrosion resistance enhancement with the addition of aniline in electropolymerization reaction was assumed as well.展开更多
The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought...The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought forward to value the effect of strain on pitting. The pitting behaviors of type 304 stainless steel in various chloride concentrations under the strain levels 0%, 10%, and 30% were investigated. Potentiostatic polarization technology was used to study how the chloride concentration affected corrosion current density. The results indicated that fc increased substantially and pitting potential varied remarkably when chloride concentration was over 90 mg.L . Under the three levels of strain mentioned above, when chloride concentration was below 463 mg.L^-1,121 mg.L^-1, and 98 mg.L^-1 respectively, the pitting potential shifted towards positivity and, the passive film became more stable. When the strain was below 10%, the pitting susceptibility of type 304 stainless steel varied greatly as strain increased, whereas the susceptibility only changed a little when the strain was over 10%.展开更多
文摘Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corrosion potential of different copolymer coatings, the best solution composition was 0.09 mol/L phenol and 0.01 mol/L aniline. Through infrared spectrum analysis, polyaniline structure was proved in phenol-aniline copolymer, as well as more side chains. Scanning electron microscope was used to analyze microstructure of copolymer coating, taking advantage of part solubility of phenol-aniline eopolymer in tetrahydrofuran, the bifurcate network structure was observed. The copolymer coating microstructure was summarized, compared with the performance of polyphenol coatings, the reasons of corrosion resistance enhancement with the addition of aniline in electropolymerization reaction was assumed as well.
文摘The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought forward to value the effect of strain on pitting. The pitting behaviors of type 304 stainless steel in various chloride concentrations under the strain levels 0%, 10%, and 30% were investigated. Potentiostatic polarization technology was used to study how the chloride concentration affected corrosion current density. The results indicated that fc increased substantially and pitting potential varied remarkably when chloride concentration was over 90 mg.L . Under the three levels of strain mentioned above, when chloride concentration was below 463 mg.L^-1,121 mg.L^-1, and 98 mg.L^-1 respectively, the pitting potential shifted towards positivity and, the passive film became more stable. When the strain was below 10%, the pitting susceptibility of type 304 stainless steel varied greatly as strain increased, whereas the susceptibility only changed a little when the strain was over 10%.