In multimedia conference, the capability of audio processing is basic and requires more for real-time criteria. In this article, we categorize and analyze the schemes, and provide several multipoint speech audio mixin...In multimedia conference, the capability of audio processing is basic and requires more for real-time criteria. In this article, we categorize and analyze the schemes, and provide several multipoint speech audio mixing schemes using weighted algorithm, which meet the demand of practical needs for real-time multipoint speech mixing, for which the ASW and AEW schemes are especially recommended. Applying the adaptive algorithms, the high-performance schemes we provide do not use the saturation operation widely used in multimedia processing. Therefore, no additional noise will be added to the output. The above adaptive algorithms have relatively low computational complexity and good hearing perceptibility. The schemes are designed for parallel processing, and can be easily implemented with hardware, such as DSPs, and widely applied in multimedia conference systems.展开更多
A distributed optical fiber acoustic sensor based on in-line Sagnac is presented.After clockwise and counterclockwise light waves are recombined,interference in3X3coupler is produced.The acoustic sensor uses photo det...A distributed optical fiber acoustic sensor based on in-line Sagnac is presented.After clockwise and counterclockwise light waves are recombined,interference in3X3coupler is produced.The acoustic sensor uses photo detector(PD),data acquisition card,filter and amplification to realize photo electric conversion and recover acoustic signal.To study the performance of this acoustic sensor,localization principle based on null frequency is analyzed.To reveal null frequencies from the acoustic disturbance position,a fast Fourier transform(F F T)is applied to transform time domain signal data into frequency domain signal.The results demonstrate that the Sagnac distributed optical fiber sensor can retransmit acoustic signal and the location performance is verified by simulation and experiment.展开更多
Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channe...Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.展开更多
We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low...We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.展开更多
New technologies in endoscopic ultrasound(EUS) evaluation have been developed because of the need to improve the EUS and EUS-fine needle aspiration(EUS- FNA) diagnostic rate. This paper reviews the principle, indicati...New technologies in endoscopic ultrasound(EUS) evaluation have been developed because of the need to improve the EUS and EUS-fine needle aspiration(EUS- FNA) diagnostic rate. This paper reviews the principle, indications, main literature results, limitations and future expectations for each of the methods presented. Contrast-enhanced harmonic EUS uses a low mechanical index and highlights slowflow vascularization. This technique is useful for differentiating solid and cystic pancreatic lesions and assessing biliary neoplasms, submucosal neoplasms and lymph nodes. It is also useful for the discrimination of pancreatic masses based on their qualitative patterns; however, the quantitative assessment needs to be improved. The detection of small solid lesions is better, and the EUS-FNA guidance needs further research. The differentiation of cystic lesions of the pancreas and the identification of the associated malignancy features represent the main indications. Elastography is used to assess tissue hardness based on the measurement of elasticity. Despite its low negative predictive value, elastography might rule out the diagnosis of malignancy for pancreatic masses. Needle confocal laser endomicroscopy offers useful information about cystic lesions of the pancreas and is still under evaluation for use with solid pancreatic lesions of lymph nodes.展开更多
The performance of the traditional Voice Activity Detection (VAD) algorithms declines sharply in lower Signal-to-Noise Ratio (SNR) environments. In this paper, a feature weighting likelihood method is proposed for...The performance of the traditional Voice Activity Detection (VAD) algorithms declines sharply in lower Signal-to-Noise Ratio (SNR) environments. In this paper, a feature weighting likelihood method is proposed for noise-robust VAD. The contribution of dynamic features to likelihood score can be increased via the method, which improves consequently the noise robustness of VAD. Divergence based dimension reduction method is proposed for saving computation, which reduces these feature dimensions with smaller divergence value at the cost of degrading the performance a little. Experimental results on Aurora Ⅱ database show that the detection performance in noise environments can remarkably be improved by the proposed method when the model trained in clean data is used to detect speech endpoints. Using weighting likelihood on the dimension-reduced features obtains comparable, even better, performance compared to original full-dimensional feature.展开更多
文摘In multimedia conference, the capability of audio processing is basic and requires more for real-time criteria. In this article, we categorize and analyze the schemes, and provide several multipoint speech audio mixing schemes using weighted algorithm, which meet the demand of practical needs for real-time multipoint speech mixing, for which the ASW and AEW schemes are especially recommended. Applying the adaptive algorithms, the high-performance schemes we provide do not use the saturation operation widely used in multimedia processing. Therefore, no additional noise will be added to the output. The above adaptive algorithms have relatively low computational complexity and good hearing perceptibility. The schemes are designed for parallel processing, and can be easily implemented with hardware, such as DSPs, and widely applied in multimedia conference systems.
基金Key Science and Technology Research Project based on Coal of Shanxi Province(No.MQ2014-09)Coal-Bed Methane Joint Research Fund of Shanxi Province(No.2016012011)Shanxi Scholarship Council of China(No.2016-035)
文摘A distributed optical fiber acoustic sensor based on in-line Sagnac is presented.After clockwise and counterclockwise light waves are recombined,interference in3X3coupler is produced.The acoustic sensor uses photo detector(PD),data acquisition card,filter and amplification to realize photo electric conversion and recover acoustic signal.To study the performance of this acoustic sensor,localization principle based on null frequency is analyzed.To reveal null frequencies from the acoustic disturbance position,a fast Fourier transform(F F T)is applied to transform time domain signal data into frequency domain signal.The results demonstrate that the Sagnac distributed optical fiber sensor can retransmit acoustic signal and the location performance is verified by simulation and experiment.
基金The project supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.
文摘We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.
基金National Grant of the Romanian Education Ministry,No.PN-II-PT-PCCA.2O13-4-11O5/2014
文摘New technologies in endoscopic ultrasound(EUS) evaluation have been developed because of the need to improve the EUS and EUS-fine needle aspiration(EUS- FNA) diagnostic rate. This paper reviews the principle, indications, main literature results, limitations and future expectations for each of the methods presented. Contrast-enhanced harmonic EUS uses a low mechanical index and highlights slowflow vascularization. This technique is useful for differentiating solid and cystic pancreatic lesions and assessing biliary neoplasms, submucosal neoplasms and lymph nodes. It is also useful for the discrimination of pancreatic masses based on their qualitative patterns; however, the quantitative assessment needs to be improved. The detection of small solid lesions is better, and the EUS-FNA guidance needs further research. The differentiation of cystic lesions of the pancreas and the identification of the associated malignancy features represent the main indications. Elastography is used to assess tissue hardness based on the measurement of elasticity. Despite its low negative predictive value, elastography might rule out the diagnosis of malignancy for pancreatic masses. Needle confocal laser endomicroscopy offers useful information about cystic lesions of the pancreas and is still under evaluation for use with solid pancreatic lesions of lymph nodes.
基金Supported by the National Basic Research Program of China (973 Program) (No.2007CB311104)
文摘The performance of the traditional Voice Activity Detection (VAD) algorithms declines sharply in lower Signal-to-Noise Ratio (SNR) environments. In this paper, a feature weighting likelihood method is proposed for noise-robust VAD. The contribution of dynamic features to likelihood score can be increased via the method, which improves consequently the noise robustness of VAD. Divergence based dimension reduction method is proposed for saving computation, which reduces these feature dimensions with smaller divergence value at the cost of degrading the performance a little. Experimental results on Aurora Ⅱ database show that the detection performance in noise environments can remarkably be improved by the proposed method when the model trained in clean data is used to detect speech endpoints. Using weighting likelihood on the dimension-reduced features obtains comparable, even better, performance compared to original full-dimensional feature.