Refinery scheduling attracts increasing concerns in both academic and industrial communities in recent years.However, due to the complexity of refinery processes, little has been reported for success use in real world...Refinery scheduling attracts increasing concerns in both academic and industrial communities in recent years.However, due to the complexity of refinery processes, little has been reported for success use in real world refineries. In academic studies, refinery scheduling is usually treated as an integrated, large-scale optimization problem,though such complex optimization problems are extremely difficult to solve. In this paper, we proposed a way to exploit the prior knowledge existing in refineries, and developed a decision making system to guide the scheduling process. For a real world fuel oil oriented refinery, ten adjusting process scales are predetermined. A C4.5 decision tree works based on the finished oil demand plan to classify the corresponding category(i.e. adjusting scale). Then,a specific sub-scheduling problem with respect to the determined adjusting scale is solved. The proposed strategy is demonstrated with a scheduling case originated from a real world refinery.展开更多
Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
Based on an integrated refining/chemical plant processing 15 Mt/a of crude and manufacturing 1.0 Mt/a of ethylene under the guideline of"engaging in refining, olefins and aromatics by whatever appropriate means" to ...Based on an integrated refining/chemical plant processing 15 Mt/a of crude and manufacturing 1.0 Mt/a of ethylene under the guideline of"engaging in refining, olefins and aromatics by whatever appropriate means" to maximize the overall value of the integrated refining/chemical plant, it is necessary to concentrate on working on the flow diagram and the solution for mutual supply of materials between the refinery and ethylene plant. After analyzing the feedstock slate, the composition and properties of products, it is proposed to optimize the integrated refming/chemical plant in order to reduce investment and operating cost to realize maximization of the value of the integrated plant.展开更多
基金Supported by the National Natural Science Foundation of China(21706282,21276137,61273039,61673236)Science Foundation of China University of Petroleum,Beijing(No.2462017YJRC028)the National High-tech 863 Program of China(2013AA 040702)
文摘Refinery scheduling attracts increasing concerns in both academic and industrial communities in recent years.However, due to the complexity of refinery processes, little has been reported for success use in real world refineries. In academic studies, refinery scheduling is usually treated as an integrated, large-scale optimization problem,though such complex optimization problems are extremely difficult to solve. In this paper, we proposed a way to exploit the prior knowledge existing in refineries, and developed a decision making system to guide the scheduling process. For a real world fuel oil oriented refinery, ten adjusting process scales are predetermined. A C4.5 decision tree works based on the finished oil demand plan to classify the corresponding category(i.e. adjusting scale). Then,a specific sub-scheduling problem with respect to the determined adjusting scale is solved. The proposed strategy is demonstrated with a scheduling case originated from a real world refinery.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.
文摘Based on an integrated refining/chemical plant processing 15 Mt/a of crude and manufacturing 1.0 Mt/a of ethylene under the guideline of"engaging in refining, olefins and aromatics by whatever appropriate means" to maximize the overall value of the integrated refining/chemical plant, it is necessary to concentrate on working on the flow diagram and the solution for mutual supply of materials between the refinery and ethylene plant. After analyzing the feedstock slate, the composition and properties of products, it is proposed to optimize the integrated refming/chemical plant in order to reduce investment and operating cost to realize maximization of the value of the integrated plant.