A novel technology using Fe powder as reducing agent for Ge and Cu recovery from precipitating vitriol supernatant in Zn hydrometallurgical plant was investigated. The results show that reaction time, temperature, agi...A novel technology using Fe powder as reducing agent for Ge and Cu recovery from precipitating vitriol supernatant in Zn hydrometallurgical plant was investigated. The results show that reaction time, temperature, agitation speed, initial pH value of solution and the amount of reducing Fe have significant effects on recovering Ge and Cu, and the optimum process operating parameters are established as follows: time 120 min, initial pH value 1.5, the dosage of reducing Fe powder 4 g/L, agitation speed 600 r/min and temperature 80 °C. Under these experimental conditions, the recovery ratios of Ge and Cu from precipitating vitriol supernatant in Zn hydrometallurgical plant can reach 96% and 100%, respectively. The content of Ge in the reduced residue reaches up to 2.06% (mass fraction), indicating that the separation and enrichment of Ge from the Zn sulfate solution is realized. The grade of Ge and Cu can reach up to 4.88% and 56.75%, respectively, when the reduced residue is further processed.展开更多
The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show...The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show that the insoluble ZnFe2O4 phase in the residue can be decomposed at temperatures ranging from 500 ℃ to 650 ℃ for 1 h. The OLI Systems software was used to study the thermodynamics of the solubility of various metal oxides existing in the decomposed residue in NH4CI-H20 system. The results show that the solubility ofZnO, PbO, CdO, CuO and Ag20 is high, while the solubility of Fe203 is less than 10-4 mol/L in the pH range from 4.0 to 9.0. The calculated data are in accordance with the experimental results.展开更多
基金Project(2011TT2057)supported by Science&Technology Department of Hunan Province,China
文摘A novel technology using Fe powder as reducing agent for Ge and Cu recovery from precipitating vitriol supernatant in Zn hydrometallurgical plant was investigated. The results show that reaction time, temperature, agitation speed, initial pH value of solution and the amount of reducing Fe have significant effects on recovering Ge and Cu, and the optimum process operating parameters are established as follows: time 120 min, initial pH value 1.5, the dosage of reducing Fe powder 4 g/L, agitation speed 600 r/min and temperature 80 °C. Under these experimental conditions, the recovery ratios of Ge and Cu from precipitating vitriol supernatant in Zn hydrometallurgical plant can reach 96% and 100%, respectively. The content of Ge in the reduced residue reaches up to 2.06% (mass fraction), indicating that the separation and enrichment of Ge from the Zn sulfate solution is realized. The grade of Ge and Cu can reach up to 4.88% and 56.75%, respectively, when the reduced residue is further processed.
基金Project(51090385) supported by the National Natural Science Foundation of China
文摘The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show that the insoluble ZnFe2O4 phase in the residue can be decomposed at temperatures ranging from 500 ℃ to 650 ℃ for 1 h. The OLI Systems software was used to study the thermodynamics of the solubility of various metal oxides existing in the decomposed residue in NH4CI-H20 system. The results show that the solubility ofZnO, PbO, CdO, CuO and Ag20 is high, while the solubility of Fe203 is less than 10-4 mol/L in the pH range from 4.0 to 9.0. The calculated data are in accordance with the experimental results.