Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light ...Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.展开更多
Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, ...Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.展开更多
In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen...In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.展开更多
Scrap tires were pyrolyzed in a continuously stirred batch reactor in the presence and absence of catalysts. The maximum yield of derived oil was up to 55.65 wt%at the optimum temperature, 500 °C. The catalytic p...Scrap tires were pyrolyzed in a continuously stirred batch reactor in the presence and absence of catalysts. The maximum yield of derived oil was up to 55.65 wt%at the optimum temperature, 500 °C. The catalytic pyrolysis was performed using 1.0 wt%(on a scrap tire weight basis) of catalysts based on ZSM‐5, USY,β, SAPO‐11, and ZSM‐22. The oil products were characterized using simula‐tion distillation, elemental analysis, and gas chromatography‐mass spectrometry. The results show that using a catalyst can increase the conversion of scrap tires to gas and decrease char by‐products;the yield of derived oil remains unchanged or a little lower. The oils derived from catalytic pyrolysis had H/C ratios of 1.55–1.65 and contained approximately 70–75 wt%light oil, 0.3–0.58 wt%S and 0.78–1.0 wt%N. Catalysts with high acid strengths and appropriate pore sizes, such as ZSM‐5, USY,β, and SAPO‐11, increased the amount of single‐ring aromatics in the light‐middle‐fraction oil to 45 wt%. The derived oil can therefore be used as a petrochemical feedstock for producing high‐value‐added chemical products or fuel oil.展开更多
The refinery of Yanshan Petrochemical Company has twice retrofitted a 2.0-Mt/a RFCC unit with the MIP-CGP technology aimed at maximization of isoparaffins/clean gasoline and increased output of propylene. By modifying...The refinery of Yanshan Petrochemical Company has twice retrofitted a 2.0-Mt/a RFCC unit with the MIP-CGP technology aimed at maximization of isoparaffins/clean gasoline and increased output of propylene. By modifying the riser reactor with addition of the second reaction zone coupled with an added external catalyst cooler outside the regenerator and adoption of the CGP catalyst to control the cracking depth the refiners have realized the target of reducing olefin content in gasoline and increasing the yield of LPG. The results of retrofitting the RFCC unit have revealed that after revamp of FCC unit the yield of LPG was increased by 7.31%, the conversion rate was increased by 9.06%, and the total liquid yield was decreased by 0.3%. After revamp of the RFCC unit the olefin content in gasoline was reduced by 19.5 v%, and the RON rating of gasoline was increased by 0.7 units to meet the demand of Beijing municipality for manufacture of the Olympic clean gasoline.展开更多
The effects of operating conditions on the distribution of olefins in the FCC gasoline, obtained during catalytic cracking reaction in the presence of the GOR-Q catalyst and conventional MLC-500 catalyst, have been st...The effects of operating conditions on the distribution of olefins in the FCC gasoline, obtained during catalytic cracking reaction in the presence of the GOR-Q catalyst and conventional MLC-500 catalyst, have been studied in detail. The test results showed that the GOR-Q catalyst could obviously reduce the content of several kinds of olefins in FCC gasoline. Olefins in the FCC gasoline consist mainly of C5- C7 compounds, that are composed of C=C bond with normal or mono- branched chains. The reduction of gasoline olefin content could be achieved by decreasing the content of above-mentioned olefins. Lower reaction temperature, lower weight hourly space velocity (WHSV) and higher catalyst to oil ratio would help to reduce the content of olefins with a C = C double bond, normal olefins, mono-branched-chain olefins and diolefins. To decrease the loss of gasoline octane number, the operation for olefin reduction should be firstly focused on increasing the catalyst to oil ratio.展开更多
Catalytic pyrolysis process(CPP)producing ethylene and propylene from paraffin base atmospheric residue was developed by RIPP and its first in the world unit was put into commercial operation successfully.The results ...Catalytic pyrolysis process(CPP)producing ethylene and propylene from paraffin base atmospheric residue was developed by RIPP and its first in the world unit was put into commercial operation successfully.The results of performance test showed that the yield of ethylene and propylene reached 14.84% and 22.21% ,respectively,at a reaction temperature of610℃by using Daqing atmospheric residue as the feedstock under an operation mode of producing ethylene and propylene at the same time,and the aromatic content of cracked naphtha reached 82.46% .The successful operation of this unit has opened a novel route for producing light olefins and aromatics from heavy oil,which is also a good example symbolizing the integration of refining technology with petrochemical process.展开更多
This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 f...This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 fraction during high-temperature cracking reached 37.38 % and propylene yield was equal to 15.60 % with the conversion rate of C4 olefins equating around 50%. The results of commercial application showed that adoption of the technology for high-temperature cracking of C4 fraction in FCC unit had led to an increase of propylene yield by 2.16 % with no remarkable changes in the yields and properties of other products.展开更多
This article introduces the commercial application of FCC technology equipped with a gasoline auxiliary reactor in the RFCC unit at PetroChina Harbin Petrochemical Branch Company. Test results have shown the excellent...This article introduces the commercial application of FCC technology equipped with a gasoline auxiliary reactor in the RFCC unit at PetroChina Harbin Petrochemical Branch Company. Test results have shown the excellent outcome for commercial application of the gasoline upgrading in the auxiliary reactor to reduce the olefin content in FCC naphtha. Application of this technology can reduce the olefin content in FCC naphtha to less than 35 v%. Adjustment of the FCC operation towards more severe conditions can further reduce the olefin content in FCC naphtha to less than 20 v%, so that the FCC naphtha can meet the current standard or meet more stringent specification requirements in the future to achieve compelling economic and social benefits.展开更多
Using fixed bed micro-reactor and cracking catalyst, re-cracking of fluid catalytic cracking (FCC) gasoline at lower temperature than conventional cracking condition has been studied. The results reveal that at lower ...Using fixed bed micro-reactor and cracking catalyst, re-cracking of fluid catalytic cracking (FCC) gasoline at lower temperature than conventional cracking condition has been studied. The results reveal that at lower temperature from 350℃-450℃ and catalyst to feed ratio of 3, the olefin content is reduced from 49% to 27%(by mass) over the catalyst whose micro-reacting activation index is 53, and the octane number is kept on high level.展开更多
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are ...Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.展开更多
In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-...In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-opened matrix and the modified Y-zeolite and the ZRP zeolite modified with metal oxides. Test results have revealed that compared with the commercial catalyst RAG under comparable reaction conditions the reaction conversion rate and product distribution provided by the novel catalyst were similar, but the olefin content in gasoline obtained thereof was decreased with the octane rating unchanged along with a slight reduction of olefin content in the LPG fraction. The hydrothermal stability of the novel catalyst was better than the commercial catalyst RAG.展开更多
A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection ...A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.展开更多
Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extra...Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extraction with methylbenzene and then divided into three parts by distillation. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS) to separate and characterize organic nitrogen species in the distillates of asphaltene at molecular level. Molecular mass of compounds was mainly distributed from 150 to 600 ~t. Number of rings plus double bonds (rdb) and synchronous fluorescence spectra indicated that most of the organonitrogen compounds (NPAC) contained heterocyclic aromatic rings, including pyridines, anilines, quinolins, pyrroles, carbazoles and indoles plus various alkyl groups. Constant-wavelength synchronous fluo- rescence spectrometry (CWSFS) indicated NPAC with 2-3 rings were the main structures of organonitrogen compounds and the corresponding structural information was proposed. Some organic nitrogen isomers were separated and identified by atmospheric pressure chemical ionization (APCI) GC-Q-TOF MS and electrospray ionization (ESI) HPLC-Q-TOF MS. The methodology applied here contained chromatographic injection of the diluted sample using conventional columns sets and Data Analysis 4.2 software. Identifying molecular structures provides a foundation to understand all aspects of coal- derived asphaltene, enabling a first-principles approach to optimize resource utilization.展开更多
A field work has been carried out to identify the occurrence of oil and oil products pollution in mangrove sediment from Red Sea of Yemen. The concentration of total petroleum hydrocarbons is from 700ng/g at Kamaran I...A field work has been carried out to identify the occurrence of oil and oil products pollution in mangrove sediment from Red Sea of Yemen. The concentration of total petroleum hydrocarbons is from 700ng/g at Kamaran Island station to 400 ng/g at Al-Hodiedah station, and the total organic carbon (TOC) in samples ranges from 0.07% at Dhubab station to 0.03% at Kamaran Island station. This pollution is as a result of localized oil pollution and/or heavy ship traffic in the Red Sea and Gulf of Aden.展开更多
An increase in energy demand leads to further exploration, transportation, and utilization of petroleum, which creates severe soil contamination because of recurrent accidents and oil spills. Remediation of these cont...An increase in energy demand leads to further exploration, transportation, and utilization of petroleum, which creates severe soil contamination because of recurrent accidents and oil spills. Remediation of these contaminated soils is challenging. Among many treatment methods practiced for remediation of petroleum-contaminated soils, surfactant-enhanced soil washing has been widely practiced as a preferred treatment option, as it is a fast and environmentally accepted method. In this paper, we review research undertaken on various anionic, nonionic, cationic, biological, and mixed surfactants for the remediation of petroleum hydrocarbon-contaminated soils. Upcoming surfactants like gemini and switchable surfactants are summarized. We assess the challenges and opportunities of in-situ and ex-situ soil washing, the mechanisms of surfactant-enhanced soil washing, and the criteria to follow for surfactant selection.Furthermore, we briefly discuss the operational and environmental factors affecting soil washing efficiency and soil and surfactant properties affecting surfactant adsorption. We also describe the advantages of coupling soil washing with effluent treatment and surfactant reuse challenges and opportunities. Moreover, challenges and possible new directions for future research on surfactant-enhanced soil washing are proposed.展开更多
It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity ...It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity and various chemical features.The central part of southern margin of Junggar Basin, NW China is such an example where there are condensates, light oils, normal density oils, heavy crude oils and natural gases. The formation mechanism of condensates has been seriously debated for long time;however, no study has integrated it with genetic types of waxy and heavy oils. Taking the central part of southern margin of Junggar Basin as a case, this study employs geological and geochemical methods to determine the formation mechanism of condensates,waxy and heavy oils in a complicated petroliferous area, and reveals the causes and geochemical processes of the co-occurrence of different types of crude oils in this region. Based on detailed geochemical analyses of more than 40 normal crude oils, light oils,condensates and heavy oils, it is found that the condensates are dominated by low carbon number n-alkanes and enriched in light naphthenics and aromatic hydrocarbons. Heptane values of these condensates range from 19% to 21%, isoheptane values from1.9 to 2.1, and toluene/n-heptane ratios from 1.5 to 2.0. The distribution of n-alkanes in the condensates presents a mirror image with high density waxy crude oils and heavy oils. Combined with the oil and gas-source correlations of the crude oils, condensates and natural gas, it is found that the condensates are product of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils which were derived from mature Cretaceous lacustrine source rocks in the relatively early stage. The waxy oils are the intermediate products of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils, while the heavy oils are in-situ residuals. Therefore, evaporative fractionation and/or phase-controlled fractionation would account for the formation of the condensate, light oil, waxy oil and heavy oil in the central part of southern margin of Junggar Basin, resulting in a great change of the content in terms of light alkanes, naphthenics and aromatics in condensates, followed by great uncertainties of toluene/n-heptane ratios due to migration and re-accumulation. The results suggest that the origin of the condensate cannot be simply concluded by its ratios of toluene/n-heptane and n-heptane/methylcyclohexane on the Thompson's cross-plot, it should be comprehensively determined by the aspects of geological background, thermal history of source rocks and petroleum generation,physical and chemical features of various crude oils and natural gas, vertical and lateral distribution of various crude oils in the study area.展开更多
基金This work is supported by the National Key Basic Program of China (No.2013CB228105) and the National Natural Science Foundation of China (No.51161140331).
文摘Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.51161140331) and the National High Technology Research and Development of Ministry of Science and Technology of China (No.2009AA05Z435).
文摘Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.
基金supported by the National Natural Science Foundation of China (21603023)the Petro China Innovation Foundation, China (2014D-5006-0501)~~
文摘In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.
基金supported by the Basic Research Program of VCC Technology(ycsy2014ky-A-14)~~
文摘Scrap tires were pyrolyzed in a continuously stirred batch reactor in the presence and absence of catalysts. The maximum yield of derived oil was up to 55.65 wt%at the optimum temperature, 500 °C. The catalytic pyrolysis was performed using 1.0 wt%(on a scrap tire weight basis) of catalysts based on ZSM‐5, USY,β, SAPO‐11, and ZSM‐22. The oil products were characterized using simula‐tion distillation, elemental analysis, and gas chromatography‐mass spectrometry. The results show that using a catalyst can increase the conversion of scrap tires to gas and decrease char by‐products;the yield of derived oil remains unchanged or a little lower. The oils derived from catalytic pyrolysis had H/C ratios of 1.55–1.65 and contained approximately 70–75 wt%light oil, 0.3–0.58 wt%S and 0.78–1.0 wt%N. Catalysts with high acid strengths and appropriate pore sizes, such as ZSM‐5, USY,β, and SAPO‐11, increased the amount of single‐ring aromatics in the light‐middle‐fraction oil to 45 wt%. The derived oil can therefore be used as a petrochemical feedstock for producing high‐value‐added chemical products or fuel oil.
文摘The refinery of Yanshan Petrochemical Company has twice retrofitted a 2.0-Mt/a RFCC unit with the MIP-CGP technology aimed at maximization of isoparaffins/clean gasoline and increased output of propylene. By modifying the riser reactor with addition of the second reaction zone coupled with an added external catalyst cooler outside the regenerator and adoption of the CGP catalyst to control the cracking depth the refiners have realized the target of reducing olefin content in gasoline and increasing the yield of LPG. The results of retrofitting the RFCC unit have revealed that after revamp of FCC unit the yield of LPG was increased by 7.31%, the conversion rate was increased by 9.06%, and the total liquid yield was decreased by 0.3%. After revamp of the RFCC unit the olefin content in gasoline was reduced by 19.5 v%, and the RON rating of gasoline was increased by 0.7 units to meet the demand of Beijing municipality for manufacture of the Olympic clean gasoline.
文摘The effects of operating conditions on the distribution of olefins in the FCC gasoline, obtained during catalytic cracking reaction in the presence of the GOR-Q catalyst and conventional MLC-500 catalyst, have been studied in detail. The test results showed that the GOR-Q catalyst could obviously reduce the content of several kinds of olefins in FCC gasoline. Olefins in the FCC gasoline consist mainly of C5- C7 compounds, that are composed of C=C bond with normal or mono- branched chains. The reduction of gasoline olefin content could be achieved by decreasing the content of above-mentioned olefins. Lower reaction temperature, lower weight hourly space velocity (WHSV) and higher catalyst to oil ratio would help to reduce the content of olefins with a C = C double bond, normal olefins, mono-branched-chain olefins and diolefins. To decrease the loss of gasoline octane number, the operation for olefin reduction should be firstly focused on increasing the catalyst to oil ratio.
文摘Catalytic pyrolysis process(CPP)producing ethylene and propylene from paraffin base atmospheric residue was developed by RIPP and its first in the world unit was put into commercial operation successfully.The results of performance test showed that the yield of ethylene and propylene reached 14.84% and 22.21% ,respectively,at a reaction temperature of610℃by using Daqing atmospheric residue as the feedstock under an operation mode of producing ethylene and propylene at the same time,and the aromatic content of cracked naphtha reached 82.46% .The successful operation of this unit has opened a novel route for producing light olefins and aromatics from heavy oil,which is also a good example symbolizing the integration of refining technology with petrochemical process.
文摘This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 fraction during high-temperature cracking reached 37.38 % and propylene yield was equal to 15.60 % with the conversion rate of C4 olefins equating around 50%. The results of commercial application showed that adoption of the technology for high-temperature cracking of C4 fraction in FCC unit had led to an increase of propylene yield by 2.16 % with no remarkable changes in the yields and properties of other products.
文摘This article introduces the commercial application of FCC technology equipped with a gasoline auxiliary reactor in the RFCC unit at PetroChina Harbin Petrochemical Branch Company. Test results have shown the excellent outcome for commercial application of the gasoline upgrading in the auxiliary reactor to reduce the olefin content in FCC naphtha. Application of this technology can reduce the olefin content in FCC naphtha to less than 35 v%. Adjustment of the FCC operation towards more severe conditions can further reduce the olefin content in FCC naphtha to less than 20 v%, so that the FCC naphtha can meet the current standard or meet more stringent specification requirements in the future to achieve compelling economic and social benefits.
文摘Using fixed bed micro-reactor and cracking catalyst, re-cracking of fluid catalytic cracking (FCC) gasoline at lower temperature than conventional cracking condition has been studied. The results reveal that at lower temperature from 350℃-450℃ and catalyst to feed ratio of 3, the olefin content is reduced from 49% to 27%(by mass) over the catalyst whose micro-reacting activation index is 53, and the octane number is kept on high level.
文摘Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.
文摘In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-opened matrix and the modified Y-zeolite and the ZRP zeolite modified with metal oxides. Test results have revealed that compared with the commercial catalyst RAG under comparable reaction conditions the reaction conversion rate and product distribution provided by the novel catalyst were similar, but the olefin content in gasoline obtained thereof was decreased with the octane rating unchanged along with a slight reduction of olefin content in the LPG fraction. The hydrothermal stability of the novel catalyst was better than the commercial catalyst RAG.
基金The National Natural Science Foundation of China(No.41967043,52160003)the Natural Science Foundation of Gansu Province(No.20JR5RA461)+1 种基金the Key Project of China Railway Southwest Research Institute Co.,Ltd.(No.2018-KJ003-Z003-XB)the Industrial Support Program of the Higher Education of Gansu Province(No.2020C-40).
文摘A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.
基金Acknowledgements The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (No. U1510122). The authors declare that the experiments comply with the current laws of China.
文摘Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extraction with methylbenzene and then divided into three parts by distillation. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS) to separate and characterize organic nitrogen species in the distillates of asphaltene at molecular level. Molecular mass of compounds was mainly distributed from 150 to 600 ~t. Number of rings plus double bonds (rdb) and synchronous fluorescence spectra indicated that most of the organonitrogen compounds (NPAC) contained heterocyclic aromatic rings, including pyridines, anilines, quinolins, pyrroles, carbazoles and indoles plus various alkyl groups. Constant-wavelength synchronous fluo- rescence spectrometry (CWSFS) indicated NPAC with 2-3 rings were the main structures of organonitrogen compounds and the corresponding structural information was proposed. Some organic nitrogen isomers were separated and identified by atmospheric pressure chemical ionization (APCI) GC-Q-TOF MS and electrospray ionization (ESI) HPLC-Q-TOF MS. The methodology applied here contained chromatographic injection of the diluted sample using conventional columns sets and Data Analysis 4.2 software. Identifying molecular structures provides a foundation to understand all aspects of coal- derived asphaltene, enabling a first-principles approach to optimize resource utilization.
文摘A field work has been carried out to identify the occurrence of oil and oil products pollution in mangrove sediment from Red Sea of Yemen. The concentration of total petroleum hydrocarbons is from 700ng/g at Kamaran Island station to 400 ng/g at Al-Hodiedah station, and the total organic carbon (TOC) in samples ranges from 0.07% at Dhubab station to 0.03% at Kamaran Island station. This pollution is as a result of localized oil pollution and/or heavy ship traffic in the Red Sea and Gulf of Aden.
基金The financial supports from the National Key Research and Development Program of China (Nos. 2016YFC0400501 and 2016YFC0400502)the Fundamental Research Funds for Central Universities of China (No. 2232018D3-43)the National Natural Science Foundation of China (No. 21277023)
文摘An increase in energy demand leads to further exploration, transportation, and utilization of petroleum, which creates severe soil contamination because of recurrent accidents and oil spills. Remediation of these contaminated soils is challenging. Among many treatment methods practiced for remediation of petroleum-contaminated soils, surfactant-enhanced soil washing has been widely practiced as a preferred treatment option, as it is a fast and environmentally accepted method. In this paper, we review research undertaken on various anionic, nonionic, cationic, biological, and mixed surfactants for the remediation of petroleum hydrocarbon-contaminated soils. Upcoming surfactants like gemini and switchable surfactants are summarized. We assess the challenges and opportunities of in-situ and ex-situ soil washing, the mechanisms of surfactant-enhanced soil washing, and the criteria to follow for surfactant selection.Furthermore, we briefly discuss the operational and environmental factors affecting soil washing efficiency and soil and surfactant properties affecting surfactant adsorption. We also describe the advantages of coupling soil washing with effluent treatment and surfactant reuse challenges and opportunities. Moreover, challenges and possible new directions for future research on surfactant-enhanced soil washing are proposed.
基金supported by the PetroChina Science and Technology Special Projects (Grant Nos. 06-10A-01-02, 2011A-0201, 2014A-0211 and 2016A-0202)
文摘It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity and various chemical features.The central part of southern margin of Junggar Basin, NW China is such an example where there are condensates, light oils, normal density oils, heavy crude oils and natural gases. The formation mechanism of condensates has been seriously debated for long time;however, no study has integrated it with genetic types of waxy and heavy oils. Taking the central part of southern margin of Junggar Basin as a case, this study employs geological and geochemical methods to determine the formation mechanism of condensates,waxy and heavy oils in a complicated petroliferous area, and reveals the causes and geochemical processes of the co-occurrence of different types of crude oils in this region. Based on detailed geochemical analyses of more than 40 normal crude oils, light oils,condensates and heavy oils, it is found that the condensates are dominated by low carbon number n-alkanes and enriched in light naphthenics and aromatic hydrocarbons. Heptane values of these condensates range from 19% to 21%, isoheptane values from1.9 to 2.1, and toluene/n-heptane ratios from 1.5 to 2.0. The distribution of n-alkanes in the condensates presents a mirror image with high density waxy crude oils and heavy oils. Combined with the oil and gas-source correlations of the crude oils, condensates and natural gas, it is found that the condensates are product of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils which were derived from mature Cretaceous lacustrine source rocks in the relatively early stage. The waxy oils are the intermediate products of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils, while the heavy oils are in-situ residuals. Therefore, evaporative fractionation and/or phase-controlled fractionation would account for the formation of the condensate, light oil, waxy oil and heavy oil in the central part of southern margin of Junggar Basin, resulting in a great change of the content in terms of light alkanes, naphthenics and aromatics in condensates, followed by great uncertainties of toluene/n-heptane ratios due to migration and re-accumulation. The results suggest that the origin of the condensate cannot be simply concluded by its ratios of toluene/n-heptane and n-heptane/methylcyclohexane on the Thompson's cross-plot, it should be comprehensively determined by the aspects of geological background, thermal history of source rocks and petroleum generation,physical and chemical features of various crude oils and natural gas, vertical and lateral distribution of various crude oils in the study area.