Cooperative hydrogen atom transfer and chiral hydrogen‐bonding catalysis as a new platform for the asymmetric synthesis of azaarene derivatives is reported.By using a tetrabutylammonium decatungstate as the photocata...Cooperative hydrogen atom transfer and chiral hydrogen‐bonding catalysis as a new platform for the asymmetric synthesis of azaarene derivatives is reported.By using a tetrabutylammonium decatungstate as the photocatalyst and a chiral phosphoric acid as the hydrogen‐bonding catalyst,transformations of a variety of commercially available hydrocarbons and silanes with diverseα‐branched 2‐vinylazaarenes could efficiently experience a tandem radical conjugate addition and enantioselective protonation process,providing a convenient and fully atom economical approach to access a range of valuable enantioenrichedα‐tertiary azaarenes in high yields with good to excellent enantioselectivities(up to 93%ee).Through the direct use of tert‐butyl methylcarbamate as the feedstock,this method enables a highly practical and concise synthesis of the enantiomerically pure medicinal molecule pheniramine(Avil).展开更多
Much attention is devoted to fluorescent dyes especially those with potential in versatile applications.Reactions under "click" conditions between nonfluorescent 3-azidocoumarins and terminal alkynes produce...Much attention is devoted to fluorescent dyes especially those with potential in versatile applications.Reactions under "click" conditions between nonfluorescent 3-azidocoumarins and terminal alkynes produced 3-(1,2,3-triazol-1-yl)coumarins,a novel type of fluorescent dyes with intense fluorescence.The structures of the new coumarins were characterized by 1H NMR,MS,and IR spectra.Fluorescence spectra measurement demonstrated excellent fluorescence performance of the triazolylcoumarins and this click reaction is a promising candidate for bioconjugation and bioimaging applications since both azide and alkynes are quite inert to biological systems.展开更多
Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extra...Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extraction with methylbenzene and then divided into three parts by distillation. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS) to separate and characterize organic nitrogen species in the distillates of asphaltene at molecular level. Molecular mass of compounds was mainly distributed from 150 to 600 ~t. Number of rings plus double bonds (rdb) and synchronous fluorescence spectra indicated that most of the organonitrogen compounds (NPAC) contained heterocyclic aromatic rings, including pyridines, anilines, quinolins, pyrroles, carbazoles and indoles plus various alkyl groups. Constant-wavelength synchronous fluo- rescence spectrometry (CWSFS) indicated NPAC with 2-3 rings were the main structures of organonitrogen compounds and the corresponding structural information was proposed. Some organic nitrogen isomers were separated and identified by atmospheric pressure chemical ionization (APCI) GC-Q-TOF MS and electrospray ionization (ESI) HPLC-Q-TOF MS. The methodology applied here contained chromatographic injection of the diluted sample using conventional columns sets and Data Analysis 4.2 software. Identifying molecular structures provides a foundation to understand all aspects of coal- derived asphaltene, enabling a first-principles approach to optimize resource utilization.展开更多
A facile and efficient synthesis of N-sulfonyl-N,N-disubstituted amidines has been achieved via a CuI-catalyzed three-component free-radical coupling reaction of tertiary amines and arenesulfonyl azides with terminal ...A facile and efficient synthesis of N-sulfonyl-N,N-disubstituted amidines has been achieved via a CuI-catalyzed three-component free-radical coupling reaction of tertiary amines and arenesulfonyl azides with terminal alkynes in the presence of azodiisobutyronitrile(AIBN).The reaction mechanism of this reaction has also been studied.展开更多
文摘Cooperative hydrogen atom transfer and chiral hydrogen‐bonding catalysis as a new platform for the asymmetric synthesis of azaarene derivatives is reported.By using a tetrabutylammonium decatungstate as the photocatalyst and a chiral phosphoric acid as the hydrogen‐bonding catalyst,transformations of a variety of commercially available hydrocarbons and silanes with diverseα‐branched 2‐vinylazaarenes could efficiently experience a tandem radical conjugate addition and enantioselective protonation process,providing a convenient and fully atom economical approach to access a range of valuable enantioenrichedα‐tertiary azaarenes in high yields with good to excellent enantioselectivities(up to 93%ee).Through the direct use of tert‐butyl methylcarbamate as the feedstock,this method enables a highly practical and concise synthesis of the enantiomerically pure medicinal molecule pheniramine(Avil).
基金the Program for Changjiang Scholars and Innovative Research Teamin University(No.IRT0526)Shanghai Municipal Natural Science Foundation (No.06ZR14001)
文摘Much attention is devoted to fluorescent dyes especially those with potential in versatile applications.Reactions under "click" conditions between nonfluorescent 3-azidocoumarins and terminal alkynes produced 3-(1,2,3-triazol-1-yl)coumarins,a novel type of fluorescent dyes with intense fluorescence.The structures of the new coumarins were characterized by 1H NMR,MS,and IR spectra.Fluorescence spectra measurement demonstrated excellent fluorescence performance of the triazolylcoumarins and this click reaction is a promising candidate for bioconjugation and bioimaging applications since both azide and alkynes are quite inert to biological systems.
基金Acknowledgements The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (No. U1510122). The authors declare that the experiments comply with the current laws of China.
文摘Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extraction with methylbenzene and then divided into three parts by distillation. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS) to separate and characterize organic nitrogen species in the distillates of asphaltene at molecular level. Molecular mass of compounds was mainly distributed from 150 to 600 ~t. Number of rings plus double bonds (rdb) and synchronous fluorescence spectra indicated that most of the organonitrogen compounds (NPAC) contained heterocyclic aromatic rings, including pyridines, anilines, quinolins, pyrroles, carbazoles and indoles plus various alkyl groups. Constant-wavelength synchronous fluo- rescence spectrometry (CWSFS) indicated NPAC with 2-3 rings were the main structures of organonitrogen compounds and the corresponding structural information was proposed. Some organic nitrogen isomers were separated and identified by atmospheric pressure chemical ionization (APCI) GC-Q-TOF MS and electrospray ionization (ESI) HPLC-Q-TOF MS. The methodology applied here contained chromatographic injection of the diluted sample using conventional columns sets and Data Analysis 4.2 software. Identifying molecular structures provides a foundation to understand all aspects of coal- derived asphaltene, enabling a first-principles approach to optimize resource utilization.
基金National Natural Science Foundation of China (20872001)the Anhui Education Department (TD200707 & KJ2008A064)+1 种基金the Program for the NCET (NCET-10-0004)the Research Culture Funds of Anhui Normal University (2010rcpy041) for their financial support
文摘A facile and efficient synthesis of N-sulfonyl-N,N-disubstituted amidines has been achieved via a CuI-catalyzed three-component free-radical coupling reaction of tertiary amines and arenesulfonyl azides with terminal alkynes in the presence of azodiisobutyronitrile(AIBN).The reaction mechanism of this reaction has also been studied.