期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于烛台图模式匹配的PM_(2.5)扩散特征的提取
1
作者
许睿
梁爽
+3 位作者
万航
文益民
沈世铭
李建
《计算机应用》
CSCD
北大核心
2023年第5期1394-1400,共7页
现有大气质量预测方法多基于单纯的时间序列数据进行趋势预测,忽略了污染物传输和扩散规律及其分类间模式特征的问题。为此,提出一种基于烛台图模式匹配(CPM)的PM_(2.5)(大气细颗粒物污染)扩散特征提取方法。首先,利用基于卷积神经网络(...
现有大气质量预测方法多基于单纯的时间序列数据进行趋势预测,忽略了污染物传输和扩散规律及其分类间模式特征的问题。为此,提出一种基于烛台图模式匹配(CPM)的PM_(2.5)(大气细颗粒物污染)扩散特征提取方法。首先,利用基于卷积神经网络(CNN)的卷积思想从大量历史PM_(2.5)序列中生成基础周期烛台图;然后,通过距离公式对不同烛台图特征向量的浓度模式进行聚类分析;最后,结合CNN在图像识别中的独特优势,形成融合图形特征与时序特征序列的混合模型,判断带有反转信号的烛台图将导致的趋势反转情况。在桂林市大气质量在线监测站的监测时序数据集上的实验结果表明,与使用单一时间序列数据的深度卷积神经网络VGG(Visual Geometry Group)相比,基于CPM的提取方法准确率提升了1.9个百分点。可见,基于CPM的方法能有效提取PM_(2.5)趋势特征,可以用于预测未来污染物浓度周期变化。
展开更多
关键词
大气污染现象
烛台图理论
模式匹配
卷积神经网络
PM_(2.5)
下载PDF
职称材料
题名
基于烛台图模式匹配的PM_(2.5)扩散特征的提取
1
作者
许睿
梁爽
万航
文益民
沈世铭
李建
机构
桂林电子科技大学计算机与信息安全学院
南方海洋科学与工程广东省实验室(广州)
卫星导航定位与位置服务国家地方联合工程研究中心(桂林电子科技大学)
出处
《计算机应用》
CSCD
北大核心
2023年第5期1394-1400,共7页
基金
广西自然科学基金资助项目(2021JJA170096)
广西重点研发计划项目(AB21196063)
+1 种基金
桂林市重大成果转化基金资助项目(20192013‑1)
桂林电子科技大学大学生创新创业训练计划项目(202010595031)。
文摘
现有大气质量预测方法多基于单纯的时间序列数据进行趋势预测,忽略了污染物传输和扩散规律及其分类间模式特征的问题。为此,提出一种基于烛台图模式匹配(CPM)的PM_(2.5)(大气细颗粒物污染)扩散特征提取方法。首先,利用基于卷积神经网络(CNN)的卷积思想从大量历史PM_(2.5)序列中生成基础周期烛台图;然后,通过距离公式对不同烛台图特征向量的浓度模式进行聚类分析;最后,结合CNN在图像识别中的独特优势,形成融合图形特征与时序特征序列的混合模型,判断带有反转信号的烛台图将导致的趋势反转情况。在桂林市大气质量在线监测站的监测时序数据集上的实验结果表明,与使用单一时间序列数据的深度卷积神经网络VGG(Visual Geometry Group)相比,基于CPM的提取方法准确率提升了1.9个百分点。可见,基于CPM的方法能有效提取PM_(2.5)趋势特征,可以用于预测未来污染物浓度周期变化。
关键词
大气污染现象
烛台图理论
模式匹配
卷积神经网络
PM_(2.5)
Keywords
air pollution phenomenon
candlestick chart theory
pattern matching
Convolutional Neural Network(CNN)
PM_(2.5)
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于烛台图模式匹配的PM_(2.5)扩散特征的提取
许睿
梁爽
万航
文益民
沈世铭
李建
《计算机应用》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部