This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank ...This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank angle degree(CAD)before top dead center(BTDC)and a set of constant ignition timing tests while also keeping the 10℃AD BTDC injection and adding ignition improver(2-ethylhexylnitrate-,2-EHN)to the fuel mixtures.Soot particles were characterized using DMS-500 instrument in terms of mass,size,and number.The experimental results showed that adding 2-EHN to the model fuel blends reduced the soot surface area,soot mass concentration and soot mean size.Replacing 20 vol%of a C 7-heptane with 20 vol%methyl-decanoate(an oxygenated C 11 molecule)did not affect the ignition delay or rate of fuel air premixing,the peak in-cylinder pressure or heat release rates.Toluene addition(0−22.5 vol%)to heptane increased the mean size of the soot particles generated by only 3%while also resulted in a slight increase in the peak cylinder pressure and peak heat release rates.Blending toluene and methyl-decanoate into heptane without adding 2-EHN increased the premix phase fraction by at least 13%.However,by adding 2-EHN(4×10^(−4)−1.5×10^(−3)),the premixed phase fraction decreased by at least 11%.展开更多
In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in ...In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in shafts with different fire source position factors(h/H) were quantitatively investigated,and the non-dimensional fitting function between the fire source position factors and the maximum temperature was deduced. The results showed that the location of the neutral plane moved upward as the fire source rose,and all the generated smoke spread to the upper areas;however,there was barely any smoke in the lower areas. The maximum temperature was inversely proportional to the fire source position factor;the higher the source position is,i.e. the higher the ratio factor is,the lower the maximum temperature is in the shaft. The experimental verification of the fire dynamics simulator(FDS) showed good results.展开更多
文摘This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank angle degree(CAD)before top dead center(BTDC)and a set of constant ignition timing tests while also keeping the 10℃AD BTDC injection and adding ignition improver(2-ethylhexylnitrate-,2-EHN)to the fuel mixtures.Soot particles were characterized using DMS-500 instrument in terms of mass,size,and number.The experimental results showed that adding 2-EHN to the model fuel blends reduced the soot surface area,soot mass concentration and soot mean size.Replacing 20 vol%of a C 7-heptane with 20 vol%methyl-decanoate(an oxygenated C 11 molecule)did not affect the ignition delay or rate of fuel air premixing,the peak in-cylinder pressure or heat release rates.Toluene addition(0−22.5 vol%)to heptane increased the mean size of the soot particles generated by only 3%while also resulted in a slight increase in the peak cylinder pressure and peak heat release rates.Blending toluene and methyl-decanoate into heptane without adding 2-EHN increased the premix phase fraction by at least 13%.However,by adding 2-EHN(4×10^(−4)−1.5×10^(−3)),the premixed phase fraction decreased by at least 11%.
文摘In this study,experimental and numerical simulation methods were combined to simulate the changing course of the temperature and velocity fields in nine different fire scenes. The characteristics of smoke movement in shafts with different fire source position factors(h/H) were quantitatively investigated,and the non-dimensional fitting function between the fire source position factors and the maximum temperature was deduced. The results showed that the location of the neutral plane moved upward as the fire source rose,and all the generated smoke spread to the upper areas;however,there was barely any smoke in the lower areas. The maximum temperature was inversely proportional to the fire source position factor;the higher the source position is,i.e. the higher the ratio factor is,the lower the maximum temperature is in the shaft. The experimental verification of the fire dynamics simulator(FDS) showed good results.