A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust c...A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust containing arsenic and antimony and satisfactory results were obtained. Over 99% of arsenic and antimony were recovered, and high purity As2O3 and SbCl3 were produced. A metallic alcoholate technique was developed and proved to be of significant to the utilization of antimony resources. Using this technique, a number of antimony oxide powders were prepared, such as high purity and ultrafine Sb2O3, ultrafine Sb2O3-Sb2O5 and Sb2O3-SnO2 composite powders.展开更多
A new combined desulfurization/denitration (DeSOx/DeNOx,) process was tested in this study. The process uses the so-called powder-particle fluidized bed (PPFB) as the major reactor in which a coarse DeNOx catalyst, se...A new combined desulfurization/denitration (DeSOx/DeNOx,) process was tested in this study. The process uses the so-called powder-particle fluidized bed (PPFB) as the major reactor in which a coarse DeNOx catalyst, several hundred micrometers in size, is fluidized by flue gas as the fluidization medium particles, while a continuously supplied fine DeSOx sorbent, several to tens of micrometers in diameter, is entrained with the flue gas. Ammonia for NOx reduction is fed to the bottom of the bed, thus, SOX and NOX are simultaneously removed in the single reactor. By adopting a model gas, SO2-NO-H2O-N2-air, to simulate actual flue gas in a laboratory-scale PPFB, simultaneous SO2 and NO removals were explored with respect to various gas components of flue gas. It was found that the variations of SO2 removal with concentrations (fractions) of oxygen, water vapor, SO2 and NO in flue gas are little affected by the simultaneous NOx reduction. However, the dependencies of NO removal upon such gas components are closely related to the inter-actions between DeSOx sorbent and DeNOx catalyst.展开更多
文摘A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust containing arsenic and antimony and satisfactory results were obtained. Over 99% of arsenic and antimony were recovered, and high purity As2O3 and SbCl3 were produced. A metallic alcoholate technique was developed and proved to be of significant to the utilization of antimony resources. Using this technique, a number of antimony oxide powders were prepared, such as high purity and ultrafine Sb2O3, ultrafine Sb2O3-Sb2O5 and Sb2O3-SnO2 composite powders.
文摘A new combined desulfurization/denitration (DeSOx/DeNOx,) process was tested in this study. The process uses the so-called powder-particle fluidized bed (PPFB) as the major reactor in which a coarse DeNOx catalyst, several hundred micrometers in size, is fluidized by flue gas as the fluidization medium particles, while a continuously supplied fine DeSOx sorbent, several to tens of micrometers in diameter, is entrained with the flue gas. Ammonia for NOx reduction is fed to the bottom of the bed, thus, SOX and NOX are simultaneously removed in the single reactor. By adopting a model gas, SO2-NO-H2O-N2-air, to simulate actual flue gas in a laboratory-scale PPFB, simultaneous SO2 and NO removals were explored with respect to various gas components of flue gas. It was found that the variations of SO2 removal with concentrations (fractions) of oxygen, water vapor, SO2 and NO in flue gas are little affected by the simultaneous NOx reduction. However, the dependencies of NO removal upon such gas components are closely related to the inter-actions between DeSOx sorbent and DeNOx catalyst.