The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasib...The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250℃ and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.展开更多
The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental ...The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental risk and realizing resource recovery.The formation of arsenic−copper-containing particles was simulated,the method of in-situ decomposition of arsenic−copper-containing particles by pyrite was proposed,and the decomposition mechanism was confirmed.It was found that particles with high arsenic content were formed in the simulated HRSG,and copper arsenate was liable for the high arsenic content.Pyrite promoted the sulfation of copper,leading to the in-situ decomposition of copper arsenate.In this process,gaseous arsenic was released,and thus the separation of arsenic and copper was realized.展开更多
An easy method for preparing CuO nanoparticles incorporated in a mesoporous structure was presented based on the thermal decomposition of a copper complex. The novel copper coordination compound of [Cu(anic)<sub>...An easy method for preparing CuO nanoparticles incorporated in a mesoporous structure was presented based on the thermal decomposition of a copper complex. The novel copper coordination compound of [Cu(anic)<sub>2</sub>]·0.75H<sub>2</sub>O (anic= 2-aminonicotinate) with the microflake morphology was synthesized through the reaction of 2-aminonicotinic acid (Hanic) and copper(II) nitrate. Using elemental analysis and Fourier transform infrared (FTIR) spectroscopy, the chemical composition of CuC<sub>12</sub>H<sub>11.5</sub>N<sub>4</sub>O<sub>4.75</sub> was proposed. Calcination process at 550 °C for 4 h transformed the microflakes into CuO nanoparticles incorporated in a mesoporous structure. The FTIR peaks assigned to 2-aminonicotinate were completely removed after calcination, confirming CuO formation. X-ray diffraction (XRD) analysis also confirmed the generation of pure and crystalline CuO. SEM showed CuO nanoparticles with the average diameter of 75 nm. The diffuse reflectance spectrum (DRS) of the CuO nanoparticles showed a band gap energy of −1.58 eV. The degradation efficiency toward rhodamine B was almost 100 % after 5 h illumination when both CuO and H<sub>2</sub>O<sub>2</sub> were utilized. The results show that the product can be used as an efficient photocatalyst for water treatment.展开更多
A new Cu(Ⅱ) coordination polymer [Cu(inio)2(H2O)] (inio = isonicotinic acid N-oxide) with chemical formula C12H10CuN2O7 was prepared and its crystal structure has been determined by X-ray analysis. The complex crysta...A new Cu(Ⅱ) coordination polymer [Cu(inio)2(H2O)] (inio = isonicotinic acid N-oxide) with chemical formula C12H10CuN2O7 was prepared and its crystal structure has been determined by X-ray analysis. The complex crystallizes in the monoclinic system, space group C2/c with a = 12.455(3), b = 6.202(1), c = 16.555(3) ? b = 106.776(3), V = 1224.3(4) 3, Z = 4, Mr = 357.76, Dc =1.941 g/cm3, m(MoKa) = 1.827 mm-1, F(000) = 724, R = 0.0601 and wR = 0.1417 for 908 observed reflections (I > 2s(I)). The Cu(Ⅱ) atom is coordinated by an elongated square pyramid geometry. The deprotonated isonicotinic acid N-oxides form a double-bridge between each pair of Cu(Ⅱ) ions in trans form through two oxygen atoms from the carboxyl groups and two other oxygen atoms from the -NO groups, respectively, which leads to an infinite one dimensional chain. The two adjacent elongated Cu(Ⅱ) square pyramidal geometries are arranged in trans form in the same chain. The OH…O hydrogen bonds extend the chain structure into two-dimensional layers.展开更多
基金the National Key Research and Development Program of China(No.2019YFC1908400)the National Natural Science Foundation of China(Nos.52174334,52374413)+3 种基金the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects,China(Nos.20212BCJ23007,20212BCJL23052)the Jiangxi Provincial Natural Science Foundation,China(Nos.20224ACB214009,20224BAB214040)the Double Thousand Plan of Jiangxi Province,China(No.S2021GDQN2970)the Distinguished Professor Program of Jinggang Scholars in Institutions of Higher Learning of Jiangxi Province,China.
文摘The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250℃ and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.
基金financially supported by the National Science Fund for Excellent Young Scholars of China(No.52022111)the National Key Research and Development Program of China(Nos.2017YFC0210401,2018YFC1900306)+1 种基金the Distinguished Young Scholars of China(No.51825403)the National Natural Science Foundation of China(Nos.51634010,51974379).
文摘The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental risk and realizing resource recovery.The formation of arsenic−copper-containing particles was simulated,the method of in-situ decomposition of arsenic−copper-containing particles by pyrite was proposed,and the decomposition mechanism was confirmed.It was found that particles with high arsenic content were formed in the simulated HRSG,and copper arsenate was liable for the high arsenic content.Pyrite promoted the sulfation of copper,leading to the in-situ decomposition of copper arsenate.In this process,gaseous arsenic was released,and thus the separation of arsenic and copper was realized.
基金Iran University of Science and Technology, the Research Council of Sharif University of Technology and Iran Nanotechnology Initiative Council for financial support
文摘An easy method for preparing CuO nanoparticles incorporated in a mesoporous structure was presented based on the thermal decomposition of a copper complex. The novel copper coordination compound of [Cu(anic)<sub>2</sub>]·0.75H<sub>2</sub>O (anic= 2-aminonicotinate) with the microflake morphology was synthesized through the reaction of 2-aminonicotinic acid (Hanic) and copper(II) nitrate. Using elemental analysis and Fourier transform infrared (FTIR) spectroscopy, the chemical composition of CuC<sub>12</sub>H<sub>11.5</sub>N<sub>4</sub>O<sub>4.75</sub> was proposed. Calcination process at 550 °C for 4 h transformed the microflakes into CuO nanoparticles incorporated in a mesoporous structure. The FTIR peaks assigned to 2-aminonicotinate were completely removed after calcination, confirming CuO formation. X-ray diffraction (XRD) analysis also confirmed the generation of pure and crystalline CuO. SEM showed CuO nanoparticles with the average diameter of 75 nm. The diffuse reflectance spectrum (DRS) of the CuO nanoparticles showed a band gap energy of −1.58 eV. The degradation efficiency toward rhodamine B was almost 100 % after 5 h illumination when both CuO and H<sub>2</sub>O<sub>2</sub> were utilized. The results show that the product can be used as an efficient photocatalyst for water treatment.
基金the Natural Science Foundation of Xuzhou Normal University (01BXL009)
文摘A new Cu(Ⅱ) coordination polymer [Cu(inio)2(H2O)] (inio = isonicotinic acid N-oxide) with chemical formula C12H10CuN2O7 was prepared and its crystal structure has been determined by X-ray analysis. The complex crystallizes in the monoclinic system, space group C2/c with a = 12.455(3), b = 6.202(1), c = 16.555(3) ? b = 106.776(3), V = 1224.3(4) 3, Z = 4, Mr = 357.76, Dc =1.941 g/cm3, m(MoKa) = 1.827 mm-1, F(000) = 724, R = 0.0601 and wR = 0.1417 for 908 observed reflections (I > 2s(I)). The Cu(Ⅱ) atom is coordinated by an elongated square pyramid geometry. The deprotonated isonicotinic acid N-oxides form a double-bridge between each pair of Cu(Ⅱ) ions in trans form through two oxygen atoms from the carboxyl groups and two other oxygen atoms from the -NO groups, respectively, which leads to an infinite one dimensional chain. The two adjacent elongated Cu(Ⅱ) square pyramidal geometries are arranged in trans form in the same chain. The OH…O hydrogen bonds extend the chain structure into two-dimensional layers.