Eddy-covariance observations from the Beijing 325-m meteorological tower are used to evaluate the effects of coordinate rotation on the turbulent exchange of momentum and scalars during wintertime haze pollution(Janua...Eddy-covariance observations from the Beijing 325-m meteorological tower are used to evaluate the effects of coordinate rotation on the turbulent exchange of momentum and scalars during wintertime haze pollution(January-February 2013). Two techniques are used in the present evaluation; namely, the natural wind coordinate(NWC) and the planar fit coordinate(PFC), with the latter being applied by means of two methods for linear regression(i.e., overall and sector-wise). The different techniques show a general agreement in both turbulent fluxes and transport efficiencies, especially evident at the lower, 140-m level above the ground(compared to the higher, 280-m level), perhaps implying that the selection of a technique for coordinate rotation(NWC or PFC) is less of a concern for a sufficiently low level, despite the complexities of urban terrain. Additionally, sector-wise regression is a recommended approach for practical application of the PFC in a complex urban environment subjected to particulate pollution, because this method is found to produce a better correlation between the mean vertical velocity at the 140- and 280-m heights.展开更多
Urban smog issue has become more and more heated topic in China in recent years.Vehicle pollution is one of the main reasons for smog and haze in most large and medium-sized cities in the country.Maybe it is not surpr...Urban smog issue has become more and more heated topic in China in recent years.Vehicle pollution is one of the main reasons for smog and haze in most large and medium-sized cities in the country.Maybe it is not surprising now that the nation drives 95 million cars,second only to the United States with 240 million.Therefore,China has released a series of policies to alleviate the increasingly severe urban smog issues and accelerate upgrading of oil products quality.展开更多
Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geogr...Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geographic and meteorological conditions,especially below a surface inversion,play an important role.We propose to destroy the inversion by pumping air from above the inversion layer to the surface layer to alleviate the severity of the smog.While long-term air quality improvement depends on the reduction of air pollution emission,air pumping may provide relief in the interim for the Beijing citizens.We estimate that an air pumping at a rate 2×10~7m^3s^(–1)can lead to significantly improved air quality in Beijing,due to(1)direct clean air input;(2)increased instability and vertical mixing and(3)a positive radiation-mixing feedback.The pumping requires an energy input of 10 GW,comparable with the energy consumption in Beijing for air conditioning in summer.We propose to use wind energy from Inner Mongolia for the pumping,which has currently an installed wind energy capacity of 70GW.展开更多
基金funded by the National Basic Research Program of China(Grant No.2014CB447900)National High Technology Research and Development Program(Grant No.2014AA06A512)Ministry of Environmental Protection of China through its Special Funds for Scientific Research on Public Welfare(Grant No.201409001)
文摘Eddy-covariance observations from the Beijing 325-m meteorological tower are used to evaluate the effects of coordinate rotation on the turbulent exchange of momentum and scalars during wintertime haze pollution(January-February 2013). Two techniques are used in the present evaluation; namely, the natural wind coordinate(NWC) and the planar fit coordinate(PFC), with the latter being applied by means of two methods for linear regression(i.e., overall and sector-wise). The different techniques show a general agreement in both turbulent fluxes and transport efficiencies, especially evident at the lower, 140-m level above the ground(compared to the higher, 280-m level), perhaps implying that the selection of a technique for coordinate rotation(NWC or PFC) is less of a concern for a sufficiently low level, despite the complexities of urban terrain. Additionally, sector-wise regression is a recommended approach for practical application of the PFC in a complex urban environment subjected to particulate pollution, because this method is found to produce a better correlation between the mean vertical velocity at the 140- and 280-m heights.
文摘Urban smog issue has become more and more heated topic in China in recent years.Vehicle pollution is one of the main reasons for smog and haze in most large and medium-sized cities in the country.Maybe it is not surprising now that the nation drives 95 million cars,second only to the United States with 240 million.Therefore,China has released a series of policies to alleviate the increasingly severe urban smog issues and accelerate upgrading of oil products quality.
基金supported by the National Natural Science Foundation of China(Grant No.91537211)
文摘Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geographic and meteorological conditions,especially below a surface inversion,play an important role.We propose to destroy the inversion by pumping air from above the inversion layer to the surface layer to alleviate the severity of the smog.While long-term air quality improvement depends on the reduction of air pollution emission,air pumping may provide relief in the interim for the Beijing citizens.We estimate that an air pumping at a rate 2×10~7m^3s^(–1)can lead to significantly improved air quality in Beijing,due to(1)direct clean air input;(2)increased instability and vertical mixing and(3)a positive radiation-mixing feedback.The pumping requires an energy input of 10 GW,comparable with the energy consumption in Beijing for air conditioning in summer.We propose to use wind energy from Inner Mongolia for the pumping,which has currently an installed wind energy capacity of 70GW.