In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo...The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.展开更多
TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure a...TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure and mechanical properties after heat treatment of TiAl alloy prepared by SPS at different temperatures were studied. The results showed that the morphology of high energy mechanically milled powder was irregular and the average grain size was about decades micrometers. X-ray diffraction analysis showed that the mechanically milled powder was composed of two phases of TiAl and Ti3Al. The main phase of TiAl and few phases of Ti3Al and TiB2 were observed in the SPS bulk samples of Ti-45Al-5.5(Cr,Nb,B,Ta) alloy. For samples sintered at 900 °C and 1000 °C, the microstructure was duplex structure with some fine equiaxed gamma grains and thin needly TiB2 phases. With the SPS temperature increasing from 900 °C to 1000 °C, the micro-hardness was changed little, the compression strength increased from 1812 MPa to 2275 MPa and the compression ratio increased from 22.66% to 25.59%. The fractography results showed that the compression fracture transform of the SPS Ti-45Al-5.5(Cr,Nb,B,Ta) alloy was rgranular rupture.展开更多
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem...Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.展开更多
A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties w...A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties was studied.The results show that the morphology of mechanical milling powder is regular with size in a range of 5-30 μm.Main phases of γ-TiAl,α2-Ti3Al and few B2 phase are observed in the SPS bulk samples.For samples sintered at 1150 °C,equiaxed crystal grain microstructure is achieved with size in a range of 300 nm-1 μm.With increasing SPS temperature to 1250 °C,the size of equiaxed crystal grains obviously increases,the microhardness decreases from HV592 to HV535,and the bending strength decreases from 605 to 219 MPa.Meantime,the compression fracture strength also decreases from 2601 to 1905 MPa,and the strain compression decreases from 28.95% to 12.09%.展开更多
A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering...A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture.展开更多
A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the micros...A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃.展开更多
Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering techno...Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering technology at different sintering temperatures. The phase composition, glass transition temperature (Tg), onset crystallization temperature (Tx), peak temperature (Tp) and super-cooled liquid region (ΔTx) of Fe75Zr3Si13B9 amorphous powders were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The phase transition, microstructure, mechanical properties and magnetic performance of the bulk alloys were discussed with X-ray diffractometer, scanning electron microscope (SEM), Gleeble 3500 and vibration sample magnetometer (VSM), respectively. It is found that with the increase in the sintering temperature at the pressure of 500 MPa, the density, compressive strength, micro-hardness and saturation magnetization of the sintering samples improved significantly, the amorphous phase began to crystallize gradually. Finally, the desirable amorphous and nanocrystalline magnetic materials at the sintering temperature of 863.15 K and the pressure of 500 MPa have a density of 6.9325 g/cm3, a compressive strength of 1140.28 MPa and a saturation magnetization of 1.28 T.展开更多
Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al a...Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.展开更多
LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on th...LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.展开更多
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro...TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.展开更多
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal...Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.展开更多
A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness...A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.展开更多
The as-sintered sinter skin of WC-11Co-0.71Cr3C2-0.06RE cemented carbide with WC+βmicrostructure was analyzed by scanning electron microscope, energy dispersive X-ray spectroscope and X-ray diffractometer. RE repres...The as-sintered sinter skin of WC-11Co-0.71Cr3C2-0.06RE cemented carbide with WC+βmicrostructure was analyzed by scanning electron microscope, energy dispersive X-ray spectroscope and X-ray diffractometer. RE represents La-, Ce-, Pr- and Nd-containing mischmetal, andβis cobalt-based binder phase. It was discovered that La, Ce, Pr and Nd migrated directionally from the alloy to the sinter skin to combine with the impurity elements S and O from the sintering atmosphere during the sintering process. As a result, main dispersed phase RE2S3 and minor RE2O2S were formed in situ on the sinter skin. The mechanisms for the stimulation of the migration activity and the directional migration of RE atoms were discussed in terms of the thermodynamics stability of Cr3C2, solubility characteristic of Cr in Co and the polarization or ionization of RE atoms.展开更多
Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering...Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering (SPS) under different process conditions. The microstructure and morphology of the powder and consolidated bulk sample were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that amorphous phase appears when ball milling time is more than 100 h, and the bulk sample consolidated by SPS can maintain amorphous/ nanocrystalline microstructure but has lower relative density. A compressive strength of 650 MPa of Al86Ni7Y4.5Co1La1.5 nanostructured samples is achieved by vacuum hot extrusion (VHE).展开更多
Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composi...Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composite with Ti B whiskers. The Ti-6Al-4V alloy and B4 C additive powders were used as raw materials. Two different consolidation techniques, namely press-and-sintering and spark plasma sintering, were selected. It was observed that in-situ Ti B whiskers were formed during sintering in both methods. The changes in size, aspect ratio and distribution of in-situ whiskers in different composite samples were monitored. The effect of spark plasma sintering temperature on the synthesis of in-situ whiskers was also investigated. Based on the microstructural observations(optical microscopy and scanning electron microscopy) and the energy dispersive spectroscopy analysis, it was concluded that increasing the spark plasma sintering temperature from 900 to 1100 °C would lead to the complete formation of in-situ Ti B whiskers and reduced porosity content.展开更多
Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, ...Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).展开更多
50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient ...50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.展开更多
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
基金Supported by the National Natural Science Foundation of China(50906040)the Nanjing University of Aeronautics and Astronautics Research Funding(NZ2012107,NS2010052)~~
文摘The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.
基金Project (51001040) supported by the National Natural Science Foundation of ChinaProject (HITQNJS.2009.022) supported by Development Program for Outstanding Young Teachers in Harbin Institute of TechnologyProject (2012RFQXG109) supported by the Youth Science and Technology Innovation Talents
文摘TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure and mechanical properties after heat treatment of TiAl alloy prepared by SPS at different temperatures were studied. The results showed that the morphology of high energy mechanically milled powder was irregular and the average grain size was about decades micrometers. X-ray diffraction analysis showed that the mechanically milled powder was composed of two phases of TiAl and Ti3Al. The main phase of TiAl and few phases of Ti3Al and TiB2 were observed in the SPS bulk samples of Ti-45Al-5.5(Cr,Nb,B,Ta) alloy. For samples sintered at 900 °C and 1000 °C, the microstructure was duplex structure with some fine equiaxed gamma grains and thin needly TiB2 phases. With the SPS temperature increasing from 900 °C to 1000 °C, the micro-hardness was changed little, the compression strength increased from 1812 MPa to 2275 MPa and the compression ratio increased from 22.66% to 25.59%. The fractography results showed that the compression fracture transform of the SPS Ti-45Al-5.5(Cr,Nb,B,Ta) alloy was rgranular rupture.
基金Project(NCET-10-0364)supported by the Program for New Century Excellent Talents in University,ChinaProject(2012ZG0006)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51174095)supported the National Natural Science Foundation of China
文摘Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.
基金Project (51001040) supported by the National Natural Science Foundation of China
文摘A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties was studied.The results show that the morphology of mechanical milling powder is regular with size in a range of 5-30 μm.Main phases of γ-TiAl,α2-Ti3Al and few B2 phase are observed in the SPS bulk samples.For samples sintered at 1150 °C,equiaxed crystal grain microstructure is achieved with size in a range of 300 nm-1 μm.With increasing SPS temperature to 1250 °C,the size of equiaxed crystal grains obviously increases,the microhardness decreases from HV592 to HV535,and the bending strength decreases from 605 to 219 MPa.Meantime,the compression fracture strength also decreases from 2601 to 1905 MPa,and the strain compression decreases from 28.95% to 12.09%.
基金Project (51001040) supported by the National Natural Science Foundation of ChinaProject (HITQNJS.2009.022) supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology, China
文摘A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture.
基金Project(2011CB605500) supported by the National Basic Research Program of ChinaProject(FRF-MP-10-005B) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(50674037) supported by the National Natural Science Foundation of China
文摘A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃.
基金Project(13961001D)supported by the Key Basic Research Project of Hebei Province,ChinaProject(2013BAE08B01)supported by the National Key Technology R&D Program of China
文摘Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering technology at different sintering temperatures. The phase composition, glass transition temperature (Tg), onset crystallization temperature (Tx), peak temperature (Tp) and super-cooled liquid region (ΔTx) of Fe75Zr3Si13B9 amorphous powders were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The phase transition, microstructure, mechanical properties and magnetic performance of the bulk alloys were discussed with X-ray diffractometer, scanning electron microscope (SEM), Gleeble 3500 and vibration sample magnetometer (VSM), respectively. It is found that with the increase in the sintering temperature at the pressure of 500 MPa, the density, compressive strength, micro-hardness and saturation magnetization of the sintering samples improved significantly, the amorphous phase began to crystallize gradually. Finally, the desirable amorphous and nanocrystalline magnetic materials at the sintering temperature of 863.15 K and the pressure of 500 MPa have a density of 6.9325 g/cm3, a compressive strength of 1140.28 MPa and a saturation magnetization of 1.28 T.
基金Project (50871084) supported by the National Natural Science Foundation of ChinaProject (2009AA032601) supported by the National High Technology Research and Development Program of China
文摘Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.
基金Prject(20111D0503200316)supported by the Programme for Peking Excellent Talents in University,ChinaProject(613135)supported by 973 Defence Plan of China
文摘TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.
基金Project(51104066)supported by the National Natural Science Foundation of ChinaProjects(2015A010105011,2015A020214008)supported by Science and Technology Program of Guangdong Province,ChinaProject(201505040925029)supported by Science and Technology Research Program of Guangzhou,China
文摘Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2008AA03A233) supported by the Hi-tech Research and Development Program of China
文摘A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.
基金Project(51074189)supported by the National Natural Science Foundation of ChinaProject(2012ZX04003–021)supported by the National Science&Technology Special Foundation of ChinaProject(Y2012–010)supported by the Nonferrous Metals Research Foundation from Hunan Nonferrous Metals Holding Group Co.,Ltd.–CSU,China
文摘The as-sintered sinter skin of WC-11Co-0.71Cr3C2-0.06RE cemented carbide with WC+βmicrostructure was analyzed by scanning electron microscope, energy dispersive X-ray spectroscope and X-ray diffractometer. RE represents La-, Ce-, Pr- and Nd-containing mischmetal, andβis cobalt-based binder phase. It was discovered that La, Ce, Pr and Nd migrated directionally from the alloy to the sinter skin to combine with the impurity elements S and O from the sintering atmosphere during the sintering process. As a result, main dispersed phase RE2S3 and minor RE2O2S were formed in situ on the sinter skin. The mechanisms for the stimulation of the migration activity and the directional migration of RE atoms were discussed in terms of the thermodynamics stability of Cr3C2, solubility characteristic of Cr in Co and the polarization or ionization of RE atoms.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High Technology Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering (SPS) under different process conditions. The microstructure and morphology of the powder and consolidated bulk sample were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that amorphous phase appears when ball milling time is more than 100 h, and the bulk sample consolidated by SPS can maintain amorphous/ nanocrystalline microstructure but has lower relative density. A compressive strength of 650 MPa of Al86Ni7Y4.5Co1La1.5 nanostructured samples is achieved by vacuum hot extrusion (VHE).
文摘Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composite with Ti B whiskers. The Ti-6Al-4V alloy and B4 C additive powders were used as raw materials. Two different consolidation techniques, namely press-and-sintering and spark plasma sintering, were selected. It was observed that in-situ Ti B whiskers were formed during sintering in both methods. The changes in size, aspect ratio and distribution of in-situ whiskers in different composite samples were monitored. The effect of spark plasma sintering temperature on the synthesis of in-situ whiskers was also investigated. Based on the microstructural observations(optical microscopy and scanning electron microscopy) and the energy dispersive spectroscopy analysis, it was concluded that increasing the spark plasma sintering temperature from 900 to 1100 °C would lead to the complete formation of in-situ Ti B whiskers and reduced porosity content.
基金Project (51374039) supported by the National Natural Science Foundation of ChinaProject (613135) supported by National Security Basic Research Program of China
文摘Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).
基金Project(2014DFA50860) supported by the International Science & Technology Cooperation Program of Ministry of Science and Technology of China
文摘50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.