LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on th...LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.展开更多
This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduce...This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.展开更多
It is generally known that the large formation amount of calcium ferrite is favorable for the iron ore sintering. The effects of sintering temperature and O2 content of inlet gas on the calcium ferrite formation chara...It is generally known that the large formation amount of calcium ferrite is favorable for the iron ore sintering. The effects of sintering temperature and O2 content of inlet gas on the calcium ferrite formation characteristic of typical iron ores, including hematite, limonite, specularite and magnetite, were investigated. And the effect of O2 content on the microstructure of the roasted briquettes was also studied in detail. The results show the amount of calcium ferrite initially increases then decreases with the increase of the sintering temperature. The temperature of maximum calcium ferrite generation amount is determined as follows: for hematite and limonite it is 1275 ~C, whereas for specularite and magnetite, 1250℃. The maximum contents of calcium ferrite for hematite, limonite, specularite and magnetite under the optimal sintering temperature are 73%, 82%, 67% and 63%, respectively. Increasing O2 content of the airflow is advantageous to the formation of calcium ferrite. Relatively, the effect of O2 content on the calcium ferrite formation of magnetite is the most pronounced, while O2 content of inlet gas has little effect on the calcium ferrite formation of limonite.展开更多
The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conduc...The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.展开更多
With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N20, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory sca...With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N20, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the majority of f-uel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N20. But in labora- tory scale CFB, the conversion of fuel-N to N20 is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in- creasing N20 formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N20 are smaller than laboratory scale CFB.展开更多
In order to burn a hydrocarbon fuel efficiently using conventional cycles,very high temperatures are required.Chemical looping combustion(CLC)offers an alternative cycle for large scale power production.In CLC a car...In order to burn a hydrocarbon fuel efficiently using conventional cycles,very high temperatures are required.Chemical looping combustion(CLC)offers an alternative cycle for large scale power production.In CLC a carrier molecule is used to transport oxygen between two redox reactions,one where the carrier is oxidised and another where it is reduced by reaction with a fuel.Separation of the oxygen carrier from fuel ash can be aided by means of phase difference and this is a key advantage of fluid phase CLC where the carrier medium proposed is sodium,potassium or zinc.The principle exploited in fluid phase CLC is the recirculation of both energy and entropy.High thermal efficiencies,circa 75% at 35 bar are theoretically achievable taking into account component efficiencies,with separation of nitrogen and carbon dioxide,in combination with the water shift gas reaction,as an inherent part of the cycle if air is used as the oxygen source.展开更多
Different ambient conditions for the synthesis of Ag(Nb0.8Ta0.2)O3 ceramics were investi- gated. The Ag(Nb0.8Ta0.2)O3 powder was synthesized at 950 ℃ under different ambient conditions, and then pressed into disk...Different ambient conditions for the synthesis of Ag(Nb0.8Ta0.2)O3 ceramics were investi- gated. The Ag(Nb0.8Ta0.2)O3 powder was synthesized at 950 ℃ under different ambient conditions, and then pressed into disks and sintered between 1060 ℃ and 1100 ℃ respectively. Samples were investigated by X-ray diffraction, scanning electron microscopy and dielectric measurement. The results show that perovskite Ag(Nb0.8Ta0.2)O3 powder was easier to be synthesized in air than in vacuum at 950℃. Grain size of ceramic samples sintered in air was uniform (about 1 μm) and its dielectric loss was small for its high density. However, the samples decomposed greatly and ceramics could hardly be densified when sintered in vacuum, Thus,. higher atmospheric pressure and oxygen atmosphere would benifit the synthesis of Ag (Nb0.8Ta0.2)O3, and suppress its decomposition at high temperature.展开更多
Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the se...Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the severe calcination condition so as to obtain the concentrated C02 stream. In this research, CaO/CaZrO3 sorbents were synthesized using the sol-gel combustion synthesis (SGCS) method with urea as fuel. The cyclic reaction performance of the synthesized sorbents was evaluated on a lab-scaled reactor system through calcination at 950 ℃ in a pure C02 atmosphere and carbonation at 650 ℃ in the 15% (by volume) C02. The mass ratio of CaO to CaZr03 as 8:2 (designated as CasZr2) was screened as the best option among all the synthesized CaO sorbents for its high CO2 capture capacity and carbonation conversion at the initial cycle. And then a gradual decay in the C02 capture capacity was observed at the following 10 successive cycles, but hereafter stabilized throughout the later cycles. Furthermore, structural evolution of the carbonated CasZr2 over the looping cycles was investigated. With increasing looping cycles, the pore peak and mean grain size of the carbonated CasZr2 sorbent shifted to the bigger direction but both the surface area (SA) ratio and surface fractal dimension Ds decreased. Finally, morphological transformation of the carbonated CasZr2 was observed. Agglomeration and edge rounding of the newly formed CaC03 grains were found as aggravated at the cyclic carbonation stage. As a result, carbonation of CasZr2 with C02 was observed only confined to the external active CaO by the fast formation of the CaC03 shell outside, which occluded the further carbonation of the unreacted CaO inside. Therefore, enough attention should be paid to the carbonation stage and more effective activation measures should be explored to ensure the unreacted active CaO fully carbonatPd river the extended Ioonin cycles.展开更多
A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing probl...A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.展开更多
The formation of the aromatic ring during the formation of polycyclic aromatic hydrocarbons (PAHs) remains controversial and the experimental evidence is still lacking. Moreover, the formation mechanism of benzene fro...The formation of the aromatic ring during the formation of polycyclic aromatic hydrocarbons (PAHs) remains controversial and the experimental evidence is still lacking. Moreover, the formation mechanism of benzene from acetylene in the gas phase has also puzzled organic chemists for decades. Here, ab initio molecular dynamics simulations and electronic structure calculations provide compelling evidence for an unexpected competitive reaction pathway in which the aromatic ring is formed through successive additions of vinylidene. Moreover, no collisions cause bond dissociation of the acetylene molecule during the formation of benzene in this work. This study reveals the key role for the vinylidene carbene and determines the lifetime of vinylidene.展开更多
Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal ox...Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal oxide and calcium sulfate) to transfer heat and oxygen to the fuel. In this paper, the primary investigation into the CLG process with CaSO4 as oxygen carrier was carried out by thermodynamic analysis and experiments in the tube reactor. Sulfur-contained gas emission was mainly H2S rather than SO2 in the CLG process, showing some different features from the CLC. The mass and heat balance of CLG processes were calculated thermodynamically to determinate the auto-thermal operating conditions with different CaSO4/C and steam/C molar ratios. It was found that the CaSO4/C molar ratio should be higher than 0.2 to reach auto-thermal balance. The effect of temperature on the reactions between oxygen carrier and coal was investigated based on Gibbs free energy minimum method and ex- perimental results. It indicated that high temperature favored the CLG process in the fuel reactor and part of syngas was consumed to compensate for auto-thermal system.展开更多
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.
基金This paper is an introduction of a key laboratory of SP.
文摘This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.
基金Project(2013JSJJ028)supported by the Key Programs of Science and Technology from Hunan Province,China
文摘It is generally known that the large formation amount of calcium ferrite is favorable for the iron ore sintering. The effects of sintering temperature and O2 content of inlet gas on the calcium ferrite formation characteristic of typical iron ores, including hematite, limonite, specularite and magnetite, were investigated. And the effect of O2 content on the microstructure of the roasted briquettes was also studied in detail. The results show the amount of calcium ferrite initially increases then decreases with the increase of the sintering temperature. The temperature of maximum calcium ferrite generation amount is determined as follows: for hematite and limonite it is 1275 ~C, whereas for specularite and magnetite, 1250℃. The maximum contents of calcium ferrite for hematite, limonite, specularite and magnetite under the optimal sintering temperature are 73%, 82%, 67% and 63%, respectively. Increasing O2 content of the airflow is advantageous to the formation of calcium ferrite. Relatively, the effect of O2 content on the calcium ferrite formation of magnetite is the most pronounced, while O2 content of inlet gas has little effect on the calcium ferrite formation of limonite.
基金Projects(51174253,51304245)supported by the National Natural Science Foundation of ChinaProject(2013bjjxj015)supported by the Outstanding and Creative Doctor Scholarship of Central South University,ChinaProject supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.
基金Supported by the National Basic Research Program of China(2009CB219802)
文摘With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N20, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the majority of f-uel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N20. But in labora- tory scale CFB, the conversion of fuel-N to N20 is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in- creasing N20 formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N20 are smaller than laboratory scale CFB.
文摘In order to burn a hydrocarbon fuel efficiently using conventional cycles,very high temperatures are required.Chemical looping combustion(CLC)offers an alternative cycle for large scale power production.In CLC a carrier molecule is used to transport oxygen between two redox reactions,one where the carrier is oxidised and another where it is reduced by reaction with a fuel.Separation of the oxygen carrier from fuel ash can be aided by means of phase difference and this is a key advantage of fluid phase CLC where the carrier medium proposed is sodium,potassium or zinc.The principle exploited in fluid phase CLC is the recirculation of both energy and entropy.High thermal efficiencies,circa 75% at 35 bar are theoretically achievable taking into account component efficiencies,with separation of nitrogen and carbon dioxide,in combination with the water shift gas reaction,as an inherent part of the cycle if air is used as the oxygen source.
基金SUPPORTED BY NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA( NO. 50402011 ).
文摘Different ambient conditions for the synthesis of Ag(Nb0.8Ta0.2)O3 ceramics were investi- gated. The Ag(Nb0.8Ta0.2)O3 powder was synthesized at 950 ℃ under different ambient conditions, and then pressed into disks and sintered between 1060 ℃ and 1100 ℃ respectively. Samples were investigated by X-ray diffraction, scanning electron microscopy and dielectric measurement. The results show that perovskite Ag(Nb0.8Ta0.2)O3 powder was easier to be synthesized in air than in vacuum at 950℃. Grain size of ceramic samples sintered in air was uniform (about 1 μm) and its dielectric loss was small for its high density. However, the samples decomposed greatly and ceramics could hardly be densified when sintered in vacuum, Thus,. higher atmospheric pressure and oxygen atmosphere would benifit the synthesis of Ag (Nb0.8Ta0.2)O3, and suppress its decomposition at high temperature.
基金Supported by the National Natural Science Foundation of China(51276210,50906030,31301586)the Partial Financial Grant of North China University of Water Resources and Electric Power(201012)the National Basic Research Program of China(2011CB707301)
文摘Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the severe calcination condition so as to obtain the concentrated C02 stream. In this research, CaO/CaZrO3 sorbents were synthesized using the sol-gel combustion synthesis (SGCS) method with urea as fuel. The cyclic reaction performance of the synthesized sorbents was evaluated on a lab-scaled reactor system through calcination at 950 ℃ in a pure C02 atmosphere and carbonation at 650 ℃ in the 15% (by volume) C02. The mass ratio of CaO to CaZr03 as 8:2 (designated as CasZr2) was screened as the best option among all the synthesized CaO sorbents for its high CO2 capture capacity and carbonation conversion at the initial cycle. And then a gradual decay in the C02 capture capacity was observed at the following 10 successive cycles, but hereafter stabilized throughout the later cycles. Furthermore, structural evolution of the carbonated CasZr2 over the looping cycles was investigated. With increasing looping cycles, the pore peak and mean grain size of the carbonated CasZr2 sorbent shifted to the bigger direction but both the surface area (SA) ratio and surface fractal dimension Ds decreased. Finally, morphological transformation of the carbonated CasZr2 was observed. Agglomeration and edge rounding of the newly formed CaC03 grains were found as aggravated at the cyclic carbonation stage. As a result, carbonation of CasZr2 with C02 was observed only confined to the external active CaO by the fast formation of the CaC03 shell outside, which occluded the further carbonation of the unreacted CaO inside. Therefore, enough attention should be paid to the carbonation stage and more effective activation measures should be explored to ensure the unreacted active CaO fully carbonatPd river the extended Ioonin cycles.
文摘A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.
基金supported by the National Natural Science Foundation of China(No.21403221 and No.91441106)
文摘The formation of the aromatic ring during the formation of polycyclic aromatic hydrocarbons (PAHs) remains controversial and the experimental evidence is still lacking. Moreover, the formation mechanism of benzene from acetylene in the gas phase has also puzzled organic chemists for decades. Here, ab initio molecular dynamics simulations and electronic structure calculations provide compelling evidence for an unexpected competitive reaction pathway in which the aromatic ring is formed through successive additions of vinylidene. Moreover, no collisions cause bond dissociation of the acetylene molecule during the formation of benzene in this work. This study reveals the key role for the vinylidene carbene and determines the lifetime of vinylidene.
基金Supported by the National~ Natural Science Foundation of China (20876079), the Natural Science Funds for Distinguished Young Scholar in Shandong Province (JQ200904), and Shandong Province Key Technologies Research and Development Program of China (2008GG 10006010, 2009GG 10007001).
文摘Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal oxide and calcium sulfate) to transfer heat and oxygen to the fuel. In this paper, the primary investigation into the CLG process with CaSO4 as oxygen carrier was carried out by thermodynamic analysis and experiments in the tube reactor. Sulfur-contained gas emission was mainly H2S rather than SO2 in the CLG process, showing some different features from the CLC. The mass and heat balance of CLG processes were calculated thermodynamically to determinate the auto-thermal operating conditions with different CaSO4/C and steam/C molar ratios. It was found that the CaSO4/C molar ratio should be higher than 0.2 to reach auto-thermal balance. The effect of temperature on the reactions between oxygen carrier and coal was investigated based on Gibbs free energy minimum method and ex- perimental results. It indicated that high temperature favored the CLG process in the fuel reactor and part of syngas was consumed to compensate for auto-thermal system.